74,275 research outputs found

    Broadband lightcurve characteristics of GRBs 980425 and 060218 and comparison with long-lag, wide-pulse GRBs

    Full text link
    It has been recently argued that low-luminosity gamma-ray bursts (LL-GRBs) are likely a unique GRB population. Here, we present systematic analysis of the lightcurve characteristics from X-ray to gamma-ray energy bands for the two prototypical LL-GRBs 980425 and 060218. It is found that both the pulse width (ww) and the ratio of the rising width to the decaying width (r/dr/d) of theses two bursts are energy-dependent over a broad energy band. There exists a significant trend that the pulses tend to be narrower and more symmetry with respect to the higher energy bands for the two events. Both the X-rays and the gamma-rays follow the same wEw - E and r/dEr/d - E relations. These facts may indicate that the X-ray emission tracks the gamma-ray emission and both are likely to be originated from the same physical mechanism. Their light curves show significant spectral lags. We calculate the three types of lags with the pulse peaking time (tpeakt_{peak}), the pulse centroid time (tcent_{cen}), and the cross-correlation function (CCF). The derived tpeakt_{peak} and tcent_{cen} are a power-law function of energy. The lag calculated by CCF is strongly correlated with that derived from tpeakt_{peak}. But the lag derived from tcent_{cen} is less correlated with that derived from tpeakt_{peak} and CCF. The energy dependence of the lags is shallower at higher energy bands. These characteristics are well consistent with that observed in typical long-lag, wide-pulse GRBs, suggesting that GRBs 980425 and 060218 may share the similar radiation physics with them.Comment: 26 pages, 10 figures, 3 tables, accepted for publication in Ap

    A Codazzi-like equation and the singular set for C1C^{1} smooth surfaces in the Heisenberg group

    Full text link
    In this paper, we study the structure of the singular set for a C1C^{1} smooth surface in the 33-dimensional Heisenberg group H1\boldsymbol{H}_{1}. We discover a Codazzi-like equation for the pp-area element along the characteristic curves on the surface. Information obtained from this ordinary differential equation helps us to analyze the local configuration of the singular set and the characteristic curves. In particular, we can estimate the size and obtain the regularity of the singular set. We understand the global structure of the singular set through a Hopf-type index theorem. We also justify that Codazzi-like equation by proving a fundamental theorem for local surfaces in H1\boldsymbol{H}_{1}.Comment: 64 pages, 17 figure

    Hole spin relaxation in semiconductor quantum dots

    Full text link
    Hole spin relaxation time due to the hole-acoustic phonon scattering in GaAs quantum dots confined in quantum wells along (001) and (111) directions is studied after the exact diagonalization of Luttinger Hamiltonian. Different effects such as strain, magnetic field, quantum dot diameter, quantum well width and the temperature on the spin relaxation time are investigated thoroughly. Many features which are quite different from the electron spin relaxation in quantum dots and quantum wells are presented with the underlying physics elaborated.Comment: 10 pages, 10 figure

    Boundary effect on CDW: Friedel oscillations, STM image

    Full text link
    We study the effect of open boundary condition on charge density waves (CDW). The electron density oscillates rapidly close to the boundary, and additional non-oscillating terms (~ln(r)) appear. The Friedel oscillations survive beyond the CDW coherence length (v_F/Delta), but their amplitude gets heavily suppressed. The scanning tunneling microscopy image (STM) of CDW shows clear features of the boundary. The local tunneling conductance becomes asymmetric with respect to the Fermi energy, and considerable amount of spectral weight is transferred to the lower gap edge. Also it exhibits additional zeros reflecting the influence of the boundary.Comment: 7 pages, 6 figure

    Radiative Kaon Decays K±π±π0γK^\pm\to\pi^\pm\pi^0\gamma and Direct CP Violation

    Full text link
    It is stressed that a measurement of the electric dipole amplitude for direct photon emission in \kpm decays through its interference with inner bremsstrahlung is important for differentiating among various models. Effects of amplitude CP violation in the radiative decays of the charged kaon are analyzed in the Standard Model in conjunction with the large NcN_c approach. We point out that gluon and electromagnetic penguin contributions to the CP-violating asymmetry between the Dalitz plots of \kpm are of equal weight. The magnitude of CP asymmetry ranges from 2×1062\times 10^{-6} to 1×1051\times 10^{-5} when the photon energy in the kaon rest frame varies from 50 MeV to 170 MeV.Comment: Latex, 11 pages, ITP-SB-93-36, IP-ASTP-22-9

    Pair loading in Gamma-Ray Burst Fireball And Prompt Emission From Pair-Rich Reverse Shock

    Full text link
    Gamma-ray bursts (GRBs) are believed to originate from ultra-relativistic winds/fireballs to avoid the "compactness problem". However, the most energetic photons in GRBs may still suffer from γγ\gamma-\gamma absorption leading to electron/positron pair production in the winds/fireballs. We show here that in a wide range of model parameters, the resulting pairs may dominate those electrons associated with baryons. Later on, the pairs would be carried into a reverse shock so that a shocked pair-rich fireball may produce a strong flash at lower frequencies, i.e. in the IR band, in contrast with optical/UV emission from a pair-poor fireball. The IR emission would show a 5/2 spectral index due to strong self-absorption. Rapid responses to GRB triggers in the IR band would detect such strong flashes. The future detections of many IR flashes will infer that the rarity of prompt optical/UV emissions is in fact due to dust obscuration in the star formation regions.Comment: 8 pages, 2 figures, ApJ accepte

    Journal Staff

    Get PDF
    Discoba (Excavata) is an ancient group of eukaryotes with great morphological and ecological diversity. Unlike the other major divisions of Discoba (Jakobida and Euglenozoa), little is known about the mitochondrial DNAs(mtDNAs) of Heterolobosea. We have assembled a complete mtDNA genome from the aggregating heterolobosean amoeba, Acrasis kona, which consists of a single circular highly AT-rich (83.3%) molecule of 51.5 kb. Unexpectedly, A. kona mtDNA is missing roughly 40% of the protein-coding genes and nearly half of the transfer RNAs found in the only other sequenced heterolobosean mtDNAs, those of Naegleria spp. Instead, over a quarter of A. kona mtDNA consists of novel open reading frames. Eleven of the 16 protein-coding genes missing from A. kona mtDNA were identified in its nuclear DNA and polyA RNA, and phylogenetic analyses indicate that at least 10 of these 11 putative nuclear-encoded mitochondrial (NcMt) proteins arose by direct transfer from the mitochondrion. Acrasis kona mtDNA also employs C-to-U type RNA editing, and 12 homologs of DYW-type pentatricopeptide repeat (PPR) proteins implicated in plant organellar RNA editing are found in A. kona nuclear DNA. A mapping of mitochondrial gene content onto a consensus phylogeny reveals a sporadic pattern of relative stasis and rampant gene loss in Discoba. Rampant loss occurred independently in the unique common lineage leading to Heterolobosea + Tsukubamonadida and later in the unique lineage leading to Acrasis. Meanwhile, mtDNA gene content appears to be remarkably stable in the Acrasis sister lineage leading to Naegleria and in their distant relatives Jakobida

    Chirally symmetric but confining dense and cold matter

    Full text link
    The folklore tradition about the QCD phase diagram is that at the chiral restoration phase transition at finite density hadrons are deconfined and there appears the quark matter. We address this question within the only known exactly solvable confining and chirally symmetric model. It is postulated within this model that there exists linear Coulomb-like confining interaction. The chiral symmetry breaking and the quark Green function are obtained from the Schwinger-Dyson (gap) equation while the color-singlet meson spectrum results from the Bethe-Salpeter equation. We solve this model at T=0 and finite chemical potential μ\mu and obtain a clear chiral restoration phase transition at the critical value \mu_{cr}. Below this value the spectrum is similar to the previously obtained one at \mu = 0. At \mu > \mu_{cr} the quarks are still confined and the physical spectrum consists of bound states which are arranged into a complete set of exact chiral multiplets. This explicitly demonstrates that a chirally symmetric matter consisting of confined but chirally symmetric hadrons at finite chemical potential is also possible in QCD. If so, there must be nontrivial implications for astrophysics.Comment: 7 pp; the paper has been expanded to make some technical details more clear; 3 new figures have been added. To appear in PR
    corecore