1,149 research outputs found

    A new indirect multi-step-ahead prediction model for a long-term hydrologic prediction

    Get PDF
    Author name used in this publication: Chun-Tian Cheng2008-2009 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    A hybrid adaptive time-delay neural network model for multi-step-ahead prediction of sunspot activity

    Get PDF
    Author name used in this publication: Chun-Tian Cheng2006-2007 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Guest Editors' introduction: Special section on mining large uncertain and probabilistic databases

    Get PDF
    published_or_final_versio

    Wavelength-multiplexed duplex transceiver based on III-V/Si hybrid integration for off-chip and on-chip optical interconnects

    Get PDF
    A six-channel wavelength-division-multiplexed optical transceiver with a compact footprint of 1.5 x 0.65 mm(2) for off-chip and on-chip interconnects is demonstrated on a single silicon-on-insulator chip. An arrayed waveguide grating is used as the (de)multiplexer, and III-V electroabsorption sections fabricated by hybrid integration technology are used as both modulators and detectors, which also enable duplex links. The 30-Gb/s capacity for each of the six wavelength channels for the off-chip transceiver is demonstrated. For the on-chip interconnect, an electrical-to-electrical 3-dB bandwidth of 13 GHz and a data rate of 30 Gb/s per wavelength are achieved

    Noise auto-correlation spectroscopy with coherent Raman scattering

    Full text link
    Ultrafast lasers have become one of the most powerful tools in coherent nonlinear optical spectroscopy. Short pulses enable direct observation of fast molecular dynamics, whereas broad spectral bandwidth offers ways of controlling nonlinear optical processes by means of quantum interferences. Special care is usually taken to preserve the coherence of laser pulses as it determines the accuracy of a spectroscopic measurement. Here we present a new approach to coherent Raman spectroscopy based on deliberately introduced noise, which increases the spectral resolution, robustness and efficiency. We probe laser induced molecular vibrations using a broadband laser pulse with intentionally randomized amplitude and phase. The vibrational resonances result in and are identified through the appearance of intensity correlations in the noisy spectrum of coherently scattered photons. Spectral resolution is neither limited by the pulse bandwidth, nor sensitive to the quality of the temporal and spectral profile of the pulses. This is particularly attractive for the applications in microscopy, biological imaging and remote sensing, where dispersion and scattering properties of the medium often undermine the applicability of ultrafast lasers. The proposed method combines the efficiency and resolution of a coherent process with the robustness of incoherent light. As we demonstrate here, it can be implemented by simply destroying the coherence of a laser pulse, and without any elaborate temporal scanning or spectral shaping commonly required by the frequency-resolved spectroscopic methods with ultrashort pulses.Comment: To appear in Nature Physic

    Enhanced performance in polymer photovoltaic cells with chloroform treated indium tin oxide anode modification

    Full text link
    Enhanced performance of a poly(3-hexylthiophene):(6,6)-phenyl C61 butyric acid methyl ester bulk heterojunction polymer photovoltaic cell is reported by modifying the indium tin oxide (ITO) anode with chloroform solution. Instead of the traditional UV-ozone treatment, the optimized chloroform modification on ITO anode can result in an enhancement in the power conversion efficiency of an identical device, originating from an increase in the photocurrent with negligible change in the open-circuit voltage. The performance enhancement is attributed to the work function modification of the ITO substrate through the surface incorporation of the chlorine, and thus improved charge collection efficiency. © 2011 American Institute of Physics

    Amplification and next generation sequencing of near full-length human enteroviruses for identification and characterisation from clinical samples

    Full text link
    © 2018, The Author(s). More than 100 different enterovirus (EV) genotypes infect humans and contribute to substantial morbidity. However, current methods for characterisation of full-length genomes are based on Sanger sequencing of short genomic regions, which are labour-intensive and do not enable comprehensive characterisation of viral populations. Here, we describe a simple and sensitive protocol for the amplification and sequencing of near full-length genomes of human EV species using next generation sequencing. EV genomes were amplified from 89% of samples tested, with Ct values ranging between 15.7 and 39.3. These samples included 7 EV-A genotypes (CVA2, 5–7, 10, 16 and EV71), 19 EV-B genotypes (CVA9, CVB1-6, ECHO3, 4, 6, 7, 9, 11, 16, 18, 25, 29, 30, and EV69), 3 EV-C genotypes (CVA19 and PV2, 3) and 1 EV-D genotype (EV70). We characterised 70 EVs from 58 clinical stool samples and eight reference strains, with a minimum of 100X depth. We found evidence of co-infection in four clinical specimens, each containing two distinct EV genotypes (CVB3/ECHO7, CVB3/ECHO18 and ECHO9/30). Characterisation of the complete genome provided conclusive genotyping of EVs, which can be applied to investigate the intra-host virus evolution of EVs, and allows further identification and investigation of EV outbreaks

    Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles

    Full text link
    Surface plasmon-enhanced electroluminescence (EL) in an organic light-emitting diode is demonstrated by incorporating the synthesized Au nanoparticles (NPs) in the hole injection layer of poly(3,4-ethylene dioxythiophene):polystyrene sulfonic acid. An increase of ∼25% in the EL intensity and efficiency are achieved for devices with Au NPs, whereas the spectral and electrical properties remain almost identical to the control device. Time-resolved photoluminescence spectroscopy reveals that the EL enhancement is ascribed to the increase in spontaneous emission rate due to the plasmonic near-field effect induced by Au NPs. © 2012 American Institute of Physics
    corecore