12,896 research outputs found
Mechanistic studies of anti-hyperpigmentary compounds: elucidating their inhibitory and regulatory actions.
Searching for depigmenting agents from natural sources has become a new direction in the cosmetic industry as natural products are generally perceived as relatively safer. In our previous study, selected Chinese medicines traditionally used to treat hyperpigmentation were tested for anti-hyperpigmentary effects using a melan-a cell culture model. Among the tested chemical compounds, 4-ethylresorcinol, 4-ethylphenol and 1-tetradecanol were found to possess hypopigmentary effects. Western blot analysis, reverse transcriptase polymerase chain reaction (RT-PCR), cyclic adenosine monophosphate (cAMP) assay, protein kinase A (PKA) activity assay, tyrosinase inhibition assay and lipid peroxidation inhibition assay were performed to reveal the underlying cellular and molecular mechanisms of the hypopigmentary effects. 4-Ethylresorcinol and 4-ethylphenol attenuated mRNA and protein expression of tyrosinase-related protein (TRP)-2, and possessed antioxidative effect by inhibiting lipid peroxidation. 1-Tetradecanol was able to attenuate protein expression of tyrosinase. The hypopigmentary actions of 4-ethylresorcinol, 4-ethylphenol and 1-tetradecanol were associated with regulating downstream proteins along the PKA pathway. 4-Ethylresorcinol was more effective in inhibiting melanin synthesis when compared to 4-ethylphenol and 1-tetradecanol
Flow pattern and pollutant removal behavior for idealized 2D urban street canyons in different thermal stratifications using large-eddy simulation
postprintThe 2011 General Assembly of the European Geosciences Union (EGU), Vienna, Austria, 3-8 April 2011. In Geophysical Research Abstracts, 2011, v. 13, EGU2011-293
Large-Eddy Simulation of Flow and Pollutant Transports in and Above Two-Dimensional Idealized Street Canyons
A large-eddy simulation (LES) model, using the one-equation subgrid-scale (SGS) parametrization, was developed to study the flow and pollutant transport in and above urban street canyons. Three identical two-dimensional (2D) street canyons of unity aspect ratio, each consisting of a ground-level area source of constant pollutant concentration, are evenly aligned in a cross-flow in the streamwise direction x. The flow falls into the skimming flow regime. A larger computational domain is adopted to accurately resolve the turbulence above roof level and its influence on the flow characteristics in the street canyons. The LES calculated statistics of wind and pollutant transports agree well with other field, laboratory and modelling results available in the literature. The maximum wind velocity standard deviations σi in the streamwise (σu), spanwise (σv) and vertical (σw) directions are located near the roof-level windward corners. Moreover, a second σw peak is found at z ≈ 1.5h (h is the building height) over the street canyons. Normalizing σi by the local friction velocity u*, it is found that σu/u* ≈ 1.8, σv/u* ≈ 1.3 and σw/u* ≈ 1.25 exhibiting rather uniform values in the urban roughness sublayer. Quadrant analysis of the vertical momentum flux u′′w′′ shows that, while the inward and outward interactions are small, the sweeps and ejections dominate the momentum transport over the street canyons. In the x direction, the two-point correlations of velocity Rv,x and Rw,x drop to zero at a separation larger than h but Ru,x (= 0.2) persists even at a separation of half the domain size. Partitioning the convective transfer coefficient ΩT of pollutant into its removal and re-entry components, an increasing pollutant re-entrainment from 26.3 to 43.3% in the x direction is revealed, suggesting the impact of background pollutant on the air quality in street canyons. © 2011 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201
Analysis of the momentum and pollutant transport at the roof level of 2D idealized street canyons: a large-eddy simulation solution
To investigate the detailed momentum and pollutant transports between urban street canyons and the shear layer, a large-eddy simulation (LES) model was developed to calculate the flow and pollutant dispersion in isothermal conditions. The computational domain consisted of three identical two-dimensional (2D) idealized street canyons of unity aspect ratio. The flow field was assumed to be periodic in the horizontal domain boundaries. The subgrid-scale (SGS) stress was calculated by solving the SGS turbulent kinetic energy (TKE) conservation. An area pollutant source with constant pollutant concentration was prescribed on the ground of all streets. Zero pollutant concentration and an open boundary were applied at the domain inflow and outflow, respectively. The quadrant and budget analyses were employed to examine the …published_or_final_versionThe 7th General Assembly of the European Geosciences Union (EGU2010), Vienna, Austria, 2-7 May 2010. In Geophysical Research Abstracts, 2010, v. 12, EGU2010-1486-
Transition temperature in QCD with physical light and strange quark masses
We present results from a calculation of the transition temperature in QCD
with two light and one heavier (strange) quark mass on lattices with temporal
extent N_t =4 and 6. Calculations with improved staggered fermions have been
performed with a strange quark mass fixed close to its physical value and for
various light to strange quark mass ratios that correspond to light
pseudo-scalar masses in the range (150-500) MeV. From a combined extrapolation
to the chiral (m_l -> 0) and continuum (aT -> 0) limits we obtain for the
transition temperature at the physical point T_c = 192(7)(4) MeV.
We also present first results from an ongoing calculation of the QCD equation
of state with almost realistic light and strange quark masses.Comment: 4 pages, 4 figures, to appear in the proceedings of the 19th
International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions,
Shanghai, Nov. 200
Learning from various labeling strategies for suicide-related messages on social media: An experimental study
Suicide is an important but often misunderstood problem, one that researchers are now seeking to better understand through social media. Due in large part to the fuzzy nature of what constitutes suicidal risks, most supervised approaches for learning to automatically detect suicide-related activity in social media require a great deal of human labor to train. However, humans themselves have diverse or conflicting views on what constitutes suicidal thoughts. So how to obtain reliable gold standard labels is fundamentally challenging and, we hypothesize, depends largely on what is asked of the annotators and what slice of the data they label. We conducted multiple rounds of data labelling and collected annotations from crowdsourcing workers and domain experts. We aggregated the resulting labels in various ways to train a series of supervised models. Our preliminary evaluations show that using unanimously agreed labels from multiple annotators is helpful to achieve robust machine models.postprin
Regulation of blood-testis barrier dynamics: An in vivo study
An in vivo model was used to investigate the regulation of tight junction (TJ) dynamics in the testis when adult rats were treated with CdCl2. It was shown that the CdCl2-induced disruption of the blood-testis barrier (BTB) associated with a transient induction in testicular TGF-β2 and TGF-β3 (but not TGF-β1 and the phosphorylated p38 mitogen activated protein (MAP) kinase, concomitant with a loss of occludin and zonula occludens-1 (ZO-1) from the BTB site in the seminiferous epithelium. These results suggest that BTB dynamics in vivo are regulated by TGF-β2/-β3 via the p38 MAP kinase pathway. Indeed, SB202190, a specific p38 MAP kinase inhibitor, blocked the CdCl2-induced occludin and ZO-1 loss from the BTB. This result clearly illustrates that CdCl2 mediates its BTB disruptive effects via the TGF-β3/p38 MAP kinase signaling pathway. Besides, this CdCl2-induced occludin and ZO-1 loss from the BTB also associated with a significant loss of the cadherin/catenin and the nectin/afadin protein complexes at the site of cell-cell actin-based adherens junctions (AJs). An induction of α2-macroglobulin (a non-specific protease inhibitor) was also observed during BTB damage and when the seminiferous epithelium was being depleted of germ cells. These data illustrate that a primary disruption of the BTB can lead to a secondary loss of cell adhesion function at the site of AJs, concomitant with an induction in protease inhibitor, which apparently is used to protect the epithelium from unwanted proteolysis. α2-Macroglobulin was also shown to associate physically with TGF-β3, afadin and nectin 3, but not occludin, E-cadherin or N-cadherin, indicating its possible role in junction restructuring in vivo. Additionally, the use of SB202190 to block the TGF-β3/p-38 MAP kinase pathway also prevented the CdCl2-induced loss of cadherin/catenin and nectin/afadin protein complexes from the AJ sites, yet it had no apparent effect on α2-macroglobulin. These results demonstrate for the first time that the TGF-β3/p38 MAP kinase signaling pathway is being used to regulate both TJ and AJ dynamics in the testis, mediated by the effects of TGF-β3 on TJ- and AJ-integral membrane proteins and adaptors, but not protease inhibitors.published_or_final_versio
Covariant Hamiltonian Field Theory
A consistent, local coordinate formulation of covariant Hamiltonian field
theory is presented. Whereas the covariant canonical field equations are
equivalent to the Euler-Lagrange field equations, the covariant canonical
transformation theory offers more general means for defining mappings that
preserve the form of the field equations than the usual Lagrangian description.
It is proved that Poisson brackets, Lagrange brackets, and canonical 2-forms
exist that are invariant under canonical transformations of the fields. The
technique to derive transformation rules for the fields from generating
functions is demonstrated by means of various examples. In particular, it is
shown that the infinitesimal canonical transformation furnishes the most
general form of Noether's theorem. We furthermore specify the generating
function of an infinitesimal space-time step that conforms to the field
equations.Comment: 93 pages, no figure
Large-eddy simulation of turbulent transports in urban street canyons in different thermal stabilities
Three scenarios of large-eddy simulation (LES) were performed to examine the characteristic flow and pollutant dispersion in urban street canyons under neutral, unstable and stable thermal stratifications. Street canyons of unity aspect ratio with ground-heating or –cooling are considered. In the LESs of the thermal stabilities tested, a large primary recirculation is developed in the center core and the turbulence production is dominated at the roof level of the street canyon. The current LES results demonstrate that unstable stratification enhances the mean wind, turbulence and pollutant removal of street canyons. On the other hand, in stable stratification, which has been less investigated in the past, the ground-level mean wind and turbulence are substantially suppressed by the large temperature inversion. Whereas, the weakened recirculating wind in the street canyon results in a larger velocity gradient that increases the turbulence production at the roof level. It also slows down the turbulence being carried from the roof down to the lower street canyon. Therefore, a higher level of turbulent kinetic energy (TKE) is retained at the mid-level of the windward side in the stably stratified street canyon.postprintThe 5th International Symposium on Computational Wind Engineering (CWE2010), Chapel Hill, N.C., 23-27 May 2010
- …
