63,962 research outputs found

    Design of serrate-semi-circular riblets with application to skin friction reduction on engineering surface

    Get PDF
    Drag reduction in wall-bounded flows can be achieved by the passive flow control technique through the application of bio-inspired riblet surfaces. This paper presents the innovative design of Serrate-Semi-Circular riblet surfaces particularly focusing on the intrinsic relationship between the riblet features and the turbulent boundary layer structure resulting from these surfaces in engineering applications. The available experimental facilities, instrumentation (i.e. hotwire) and measurement techniques (i.e. velocity spectra) have been employed to investigate the boundary layer velocity profiles and skin friction for flat plate and Serrate-Semi-Circular riblet surfaces. Both the simulation and experimental wind tunnel testing results show that the Serrate-Semi-Circular riblet surface can provide 7% drag reduction, which is better than other riblet configurations, such as V and U shaped ones

    Impact of random dopant induced fluctuations on sub-15nm UTB SOI 6T SRAM cells

    Get PDF
    The CMOS scaling increases the impact of intrinsic parameter fluctuation on the yield and functionality of SRAM. A statistical circuit simulation framework which can fully capture intrinsic parameter fluctuation information into the compact model has been developed. The impact of discrete random dopants in the source and drain regions on 6T SRAM cells has been investigated for well scaled ultra thin body (UTB) SOI MOSFETs with physical channel length in the range of 10nm to 5nm

    The Origin of Gamma-Rays from Globular Clusters

    Get PDF
    Fermi has detected gamma-ray emission from eight globular clusters. We suggest that the gamma-ray emission from globular clusters may result from the inverse Compton scattering between relativistic electrons/positrons in the pulsar wind of MSPs in the globular clusters and background soft photons including cosmic microwave/relic photons, background star lights in the clusters, the galactic infrared photons and the galactic star lights. We show that the gamma-ray spectrum from 47 Tuc can be explained equally well by upward scattering of either the relic photons, the galactic infrared photons or the galactic star lights whereas the gamma-ray spectra from other seven globular clusters are best fitted by the upward scattering of either the galactic infrared photons or the galactic star lights. We also find that the observed gamma-ray luminosity is correlated better with the combined factor of the encounter rate and the background soft photon energy density. Therefore the inverse Compton scattering may also contribute to the observed gamma-ray emission from globular clusters detected by Fermi in addition to the standard curvature radiation process. Furthermore, we find that the emission region of high energy photons from globular cluster produced by inverse Compton scattering is substantially larger than the core of globular cluster with a radius >10pc. The diffuse radio and X-rays emitted from globular clusters can also be produced by synchrotron radiation and inverse Compton scattering respectively. We suggest that future observations including radio, X-rays, and gamma-rays with energy higher than 10 GeV and better angular resolution can provide better constraints for the models.Comment: Accepted by ApJ, Comments may send to Prof. K.S. Cheng: [email protected]

    Formation and kinetics of transient metastable states in mixtures under coupled phase ordering and chemical demixing

    Get PDF
    We present theory and simulation of simultaneous chemical demixing and phase ordering in a polymer-liquid crystal mixture in conditions where isotropic- isotropic phase separation is metastable with respect to isotropic-nematic phase transition. It is found that mesophase formation proceeds by a transient metastable phase that surround the ordered phase, and whose lifetime is a function of the ratio of diffusional to orientational mobilities. It is shown that kinetic phase ordering in polymer-mesogen mixtures is analogous to kinetic crystallization in polymer solutions.Comment: 17 pages, 5 figures accepted for publication in EP

    Modelling the multi-wavelength emissions from PSR B1259-63/LS 2883: the effects of the stellar disc on shock radiations

    Get PDF
    PSR B1259-63/LS 2883 is an elliptical pulsar/Be star binary and emits broadband emissions from radio to TeV γ\gamma-rays. The massive star possesses an equatorial disc, which is inclined with the orbital plane of the pulsar. The non-thermal emission from the system is believed to be produced by the pulsar wind shock and the double-peak profiles in the X-ray and TeV γ\gamma-ray light curves are related to the phases of the pulsar passing through the disc region of the star. In this paper, we investigate the interactions between the pulsar wind and stellar outflows, especially with the presence of the disc, and present a multi-wavelength modelling of the emission from this system. We show that the double-peak profiles of X-ray and TeV γ\gamma-ray light curves are caused by the enhancements of the magnetic field and the soft photons at the shock during the disc passages. As the pulsar is passing through the equatorial disc, the additional pressure of the disc pushes the shock surface closer to the pulsar, which causes the enhancement of magnetic field in the shock, and thus increases the synchrotron luminosity. The TeV γ\gamma-rays due to the inverse-Compton (IC) scattering of shocked electrons with seed photons from the star is expected to peak around periastron which is inconsistent with observations. However, the shock heating of the stellar disc could provide additional seed photons for IC scattering during the disc passages, and thus produces the double-peak profiles as observed in the TeV γ\gamma-ray light curve. Our model can possibly be examined and applied to other similar gamma-ray binaries, such as PSR J2032+4127/MT91 213, HESS J0632+057, and LS I+61^{\circ}303.Comment: 14 pages, 6 figure

    Multi-wavelength Emission from the Fermi Bubble III. Stochastic (Fermi) Re-Acceleration of Relativistic Electrons Emitted by SNRs

    Get PDF
    We analyse the model of stochastic re-acceleration of electrons, which are emitted by supernova remnants (SNRs) in the Galactic Disk and propagate then into the Galactic halo, in order to explain the origin on nonthermal (radio and gamma-ray) emission from the Fermi Bubbles (FB). We assume that the energy for re-acceleration in the halo is supplied by shocks generated by processes of star accretion onto the central black hole. Numerical simulations show that regions with strong turbulence (places for electron re-acceleration) are located high up in the Galactic Halo about several kpc above the disk. The energy of SNR electrons that reach these regions does not exceed several GeV because of synchrotron and inverse Compton energy losses. At appropriate parameters of re-acceleration these electrons can be re-accelerated up to the energy 10E12 eV which explains in this model the origin of the observed radio and gamma-ray emission from the FB. However although the model gamma-ray spectrum is consistent with the Fermi results, the model radio spectrum is steeper than the observed by WMAP and Planck. If adiabatic losses due to plasma outflow from the Galactic central regions are taken into account, then the re-acceleration model nicely reproduces the Planck datapoints.Comment: 33 pages, 8 figures, accepted by Ap

    Diverse Temporal Properties of GRB Afterglow

    Full text link
    The detection of delayed X-ray, optical and radio emission, "afterglow", associated with γ\gamma-ray bursts (GRBs) is consistent with fireball models, where the emission are produced by relativistic expanding blast wave, driven by expanding fireball at cosmogical distances. The emission mechanisms of GRB afterglow have been discussed by many authors and synchrotron radiation is believed to be the main mechanism. The observations show that the optical light curves of two observed gamma-ray bursts, GRB970228 and GRB GRB970508, can be described by a simple power law, which seems to support the synchrotron radiation explanation. However, here we shall show that under some circumstances, the inverse Compton scattering (ICS) may play an important role in emission spectrum and this may influence the temporal properties of GRB afterglow. We expect that the light curves of GRB afterglow may consist of multi-components, which depends on the fireball parameters.Comment: Latex, no figures, minor correctio
    corecore