7,520 research outputs found

    Observation of recoil-induced resonances and electromagnetically induced absorption of cold atoms in diffuse light

    Full text link
    In this paper we report an experiment on the observation of the recoil-induced resonances (RIR) and electromagnetically induced absorption (EIA) of cold Rb87 atoms in diffuse light. The pump light of the RIR and the EIA comes from the diffuse light in an integrating sphere, which also serves the cooling light. The probe light beam is a weak laser split from the cooling laser in order to keep the cooling and probe lasers correlated. We measured the RIR and the EIA signal varying with the detuning of the diffuse laser light, and also measured the temperature of the cold atoms at the different detunings. The mechanism of RIR and EIA in the configuration with diffuse-light pumping and laser probing is discussed, and the difference of nonlinear spectra of cold atoms between in diffuse-light cooling system and in optical molasses as well as in a magneto-optical trap (MOT) are studied.Comment: 9 pages, 6 figure

    A Heuristic Neural Network Structure Relying on Fuzzy Logic for Images Scoring

    Get PDF
    Traditional deep learning methods are sub-optimal in classifying ambiguity features, which often arise in noisy and hard to predict categories, especially, to distinguish semantic scoring. Semantic scoring, depending on semantic logic to implement evaluation, inevitably contains fuzzy description and misses some concepts, for example, the ambiguous relationship between normal and probably normal always presents unclear boundaries (normal − more likely normal - probably normal). Thus, human error is common when annotating images. Differing from existing methods that focus on modifying kernel structure of neural networks, this study proposes a dominant fuzzy fully connected layer (FFCL) for Breast Imaging Reporting and Data System (BI-RADS) scoring and validates the universality of this proposed structure. This proposed model aims to develop complementary properties of scoring for semantic paradigms, while constructing fuzzy rules based on analyzing human thought patterns, and to particularly reduce the influence of semantic conglutination. Specifically, this semantic-sensitive defuzzier layer projects features occupied by relative categories into semantic space, and a fuzzy decoder modifies probabilities of the last output layer referring to the global trend. Moreover, the ambiguous semantic space between two relative categories shrinks during the learning phases, as the positive and negative growth trends of one category appearing among its relatives were considered. We first used the Euclidean Distance (ED) to zoom in the distance between the real scores and the predicted scores, and then employed two sample t test method to evidence the advantage of the FFCL architecture. Extensive experimental results performed on the CBIS-DDSM dataset show that our FFCL structure can achieve superior performances for both triple and multiclass classification in BI-RADS scoring, outperforming the state-of-the-art methods

    Mixture Selection, Mechanism Design, and Signaling

    Full text link
    We pose and study a fundamental algorithmic problem which we term mixture selection, arising as a building block in a number of game-theoretic applications: Given a function gg from the nn-dimensional hypercube to the bounded interval [−1,1][-1,1], and an n×mn \times m matrix AA with bounded entries, maximize g(Ax)g(Ax) over xx in the mm-dimensional simplex. This problem arises naturally when one seeks to design a lottery over items for sale in an auction, or craft the posterior beliefs for agents in a Bayesian game through the provision of information (a.k.a. signaling). We present an approximation algorithm for this problem when gg simultaneously satisfies two smoothness properties: Lipschitz continuity with respect to the L∞L^\infty norm, and noise stability. The latter notion, which we define and cater to our setting, controls the degree to which low-probability errors in the inputs of gg can impact its output. When gg is both O(1)O(1)-Lipschitz continuous and O(1)O(1)-stable, we obtain an (additive) PTAS for mixture selection. We also show that neither assumption suffices by itself for an additive PTAS, and both assumptions together do not suffice for an additive FPTAS. We apply our algorithm to different game-theoretic applications from mechanism design and optimal signaling. We make progress on a number of open problems suggested in prior work by easily reducing them to mixture selection: we resolve an important special case of the small-menu lottery design problem posed by Dughmi, Han, and Nisan; we resolve the problem of revenue-maximizing signaling in Bayesian second-price auctions posed by Emek et al. and Miltersen and Sheffet; we design a quasipolynomial-time approximation scheme for the optimal signaling problem in normal form games suggested by Dughmi; and we design an approximation algorithm for the optimal signaling problem in the voting model of Alonso and C\^{a}mara

    Scalable Parallel Factorizations of SDD Matrices and Efficient Sampling for Gaussian Graphical Models

    Full text link
    Motivated by a sampling problem basic to computational statistical inference, we develop a nearly optimal algorithm for a fundamental problem in spectral graph theory and numerical analysis. Given an n×nn\times n SDDM matrix M{\bf \mathbf{M}}, and a constant −1≤p≤1-1 \leq p \leq 1, our algorithm gives efficient access to a sparse n×nn\times n linear operator C~\tilde{\mathbf{C}} such that Mp≈C~C~⊤.{\mathbf{M}}^{p} \approx \tilde{\mathbf{C}} \tilde{\mathbf{C}}^\top. The solution is based on factoring M{\bf \mathbf{M}} into a product of simple and sparse matrices using squaring and spectral sparsification. For M{\mathbf{M}} with mm non-zero entries, our algorithm takes work nearly-linear in mm, and polylogarithmic depth on a parallel machine with mm processors. This gives the first sampling algorithm that only requires nearly linear work and nn i.i.d. random univariate Gaussian samples to generate i.i.d. random samples for nn-dimensional Gaussian random fields with SDDM precision matrices. For sampling this natural subclass of Gaussian random fields, it is optimal in the randomness and nearly optimal in the work and parallel complexity. In addition, our sampling algorithm can be directly extended to Gaussian random fields with SDD precision matrices

    Res2Net: A New Multi-scale Backbone Architecture

    Full text link
    Representing features at multiple scales is of great importance for numerous vision tasks. Recent advances in backbone convolutional neural networks (CNNs) continually demonstrate stronger multi-scale representation ability, leading to consistent performance gains on a wide range of applications. However, most existing methods represent the multi-scale features in a layer-wise manner. In this paper, we propose a novel building block for CNNs, namely Res2Net, by constructing hierarchical residual-like connections within one single residual block. The Res2Net represents multi-scale features at a granular level and increases the range of receptive fields for each network layer. The proposed Res2Net block can be plugged into the state-of-the-art backbone CNN models, e.g., ResNet, ResNeXt, and DLA. We evaluate the Res2Net block on all these models and demonstrate consistent performance gains over baseline models on widely-used datasets, e.g., CIFAR-100 and ImageNet. Further ablation studies and experimental results on representative computer vision tasks, i.e., object detection, class activation mapping, and salient object detection, further verify the superiority of the Res2Net over the state-of-the-art baseline methods. The source code and trained models are available on https://mmcheng.net/res2net/.Comment: 11 pages, 7 figure

    Single deep ultraviolet light emission from boron nitride nanotube film

    Get PDF
    Light in deep ultraviolet DUV region has a wide range of applications and the demand for finding DUV light emitting materials at nanoscale is increasingly urgent as they are vital for building miniaturized optic and optoelectronic devices. We discover that boron nitride nanotubes BNNTs with a well-crystallized cylindrical multiwall structure and diameters smaller than 10 nm can have single DUV emission at 225 nm 5.51 eV. The measured BNNTs are grown on substrate in the form of a thin film. This study suggests that BNNTs may work as nanosized DUV light sources for various applications. © 20
    • …
    corecore