974 research outputs found
Label Ranking with Probabilistic Models
Diese Arbeit konzentriert sich auf eine spezielle Prognoseform, das sogenannte Label Ranking. Auf den Punkt gebracht, kann Label Ranking als eine Erweiterung des herkömmlichen Klassifizierungproblems betrachtet werden. Bei einer Anfrage (z. B. durch einen Kunden) und einem vordefinierten Set von Kandidaten Labels (zB AUDI, BMW, VW), wird ein einzelnes Label (zB BMW) zur Vorhersage in der Klassifizierung benötigt, während ein komplettes Ranking aller Label (zB BMW> VW> Audi) für das Label Ranking erforderlich ist. Da Vorhersagen dieser Art, bei vielen Problemen der realen Welt nützlich sind, können Label Ranking-Methoden in mehreren Anwendungen, darunter Information Retrieval, Kundenwunsch Lernen und E-Commerce eingesetzt werden. Die vorliegende Arbeit stellt eine Auswahl an Methoden für Label-Ranking vor, die Maschinelles Lernen mit statistischen Bewertungsmodellen kombiniert.
Wir konzentrieren wir uns auf zwei statistische Ranking-Modelle, das Mallows- und das Plackett-Luce-Modell und zwei Techniken des maschinellen Lernens, das Beispielbasierte Lernen und das Verallgemeinernde Lineare Modell
On the Bayes-optimality of F-measure maximizers
The F-measure, which has originally been introduced in information retrieval,
is nowadays routinely used as a performance metric for problems such as binary
classification, multi-label classification, and structured output prediction.
Optimizing this measure is a statistically and computationally challenging
problem, since no closed-form solution exists. Adopting a decision-theoretic
perspective, this article provides a formal and experimental analysis of
different approaches for maximizing the F-measure. We start with a Bayes-risk
analysis of related loss functions, such as Hamming loss and subset zero-one
loss, showing that optimizing such losses as a surrogate of the F-measure leads
to a high worst-case regret. Subsequently, we perform a similar type of
analysis for F-measure maximizing algorithms, showing that such algorithms are
approximate, while relying on additional assumptions regarding the statistical
distribution of the binary response variables. Furthermore, we present a new
algorithm which is not only computationally efficient but also Bayes-optimal,
regardless of the underlying distribution. To this end, the algorithm requires
only a quadratic (with respect to the number of binary responses) number of
parameters of the joint distribution. We illustrate the practical performance
of all analyzed methods by means of experiments with multi-label classification
problems
Analysis of Public Policy Effect on High-Quality Employment and Its Problems
Due to the industrial structure adjustment and scientific and technological progress, China is facing significant problems in employment. Public policies, as one of national macro-control tools, play an irreplaceable role in industrial structure adjustment and employment promotion and other fields. In this paper, public policy effect on high-quality employment in China is analyzed, in terms of finance, taxation, social security, science and technology and other policies, to detect problems existing in public policy effect on high-quality employment. To be specific, in terms of their effects on employment, public policies have following problems: insufficient investment in vocational education, huge gaps in tax preferential policies, low coverage of social security policies, and slow pace of commercialization of scientific and technological fruits
- …