159 research outputs found

    A knowledge-guided strategy for improving the accuracy of scoring functions in binding affinity prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current scoring functions are not very successful in protein-ligand binding affinity prediction albeit their popularity in structure-based drug designs. Here, we propose a general knowledge-guided scoring (KGS) strategy to tackle this problem. Our KGS strategy computes the binding constant of a given protein-ligand complex based on the known binding constant of an appropriate reference complex. A good training set that includes a sufficient number of protein-ligand complexes with known binding data needs to be supplied for finding the reference complex. The reference complex is required to share a similar pattern of key protein-ligand interactions to that of the complex of interest. Thus, some uncertain factors in protein-ligand binding may cancel out, resulting in a more accurate prediction of absolute binding constants.</p> <p>Results</p> <p>In our study, an automatic algorithm was developed for summarizing key protein-ligand interactions as a pharmacophore model and identifying the reference complex with a maximal similarity to the query complex. Our KGS strategy was evaluated in combination with two scoring functions (X-Score and PLP) on three test sets, containing 112 HIV protease complexes, 44 carbonic anhydrase complexes, and 73 trypsin complexes, respectively. Our results obtained on crystal structures as well as computer-generated docking poses indicated that application of the KGS strategy produced more accurate predictions especially when X-Score or PLP alone did not perform well.</p> <p>Conclusions</p> <p>Compared to other targeted scoring functions, our KGS strategy does not require any re-parameterization or modification on current scoring methods, and its application is not tied to certain systems. The effectiveness of our KGS strategy is in theory proportional to the ever-increasing knowledge of experimental protein-ligand binding data. Our KGS strategy may serve as a more practical remedy for current scoring functions to improve their accuracy in binding affinity prediction.</p

    Predicting drug–drug interactions through drug structural similarities and interaction networks incorporating pharmacokinetics and pharmacodynamics knowledge

    Get PDF
    Additional file 1. Table S1. Average structural similarity scores for the DDI/non–DDI pairs in the network of each De. Table S2-1. Top 10 predicted drugs with DDIs for warfarin. Table S2-2. Top 10 predicted drugs with DDIs for simvastatin. Table S3. Four-fold cross-validation test results. Text S1. Drugs that show DDI (DrugBank ID). Figure S1. Illustration of construction of training and test set for 4-fold cross validation. Figure S2. ROC curves using the models with score set 1 in a 4-fold validation

    Reaction Data in PubChem

    Get PDF
    A presentation at the enviPathPlus workshop (held online) on "Reaction Data in PubChem". Presented by E. Schymanski on behalf of all authors. See slides for details and many hyperlinks - thanks to Kathrin Fenner for the opportunity

    Sodium Dichloroacetate Stimulates Angiogenesis by Improving Endothelial Precursor Cell Function in an AKT/GSK-3β/Nrf2 Dependent Pathway in Vascular Dementia Rats

    Get PDF
    Sodium dichloroacetate (DCA) is a mitochondrial pyruvate dehydrogenase kinase inhibitor, and has been shown to display vasoprotective effects in chronic ischemic stroke. The purpose of this study was to evaluate the therapeutic effect of DCA on vascular dementia (VD) and endothelial progenitor cell (EPC)-mediated angiogenesis. After cerebral ischemia-reperfusion in rats, DCA was administered continuously for 21 days; following which, histological analysis, and cognitive functional tests were conducted. Rat bone marrow-derived EPCs were isolated, their function and quantity were measured, and the effects of long-term administration of DCA on EPCs in a rat model of VD was studied. We found that long-term DCA administration improved cognitive function in VD rats, reduced brain infarct size and brain atrophy, increased VEGF and bFGF levels in vivo, promoted angiogenesis in damaged areas, and significantly improved EPC function in VD rats. Compared with the VD group, AKT, Nrf2, eNOS expression, and intracellular NO levels were elevated in EPCs of DCA-treated VD rats. In addition, GSK3β and intracellular ROS levels were decreased. Simultaneously, it was found that DCA directly acted on EPCs, and improved EPC functional behavior. Taken together, these findings suggested that long-term DCA administration improved cognitive function in a rat model of VD, and did so in part, by improving EPC function. Observations suggest that prolonged DCA administration might be beneficial in treating VD

    Antitumor Activity of cGAMP via Stimulation of cGAS-cGAMP-STING-IRF3 Mediated Innate Immune Response

    Get PDF
    Immunotherapy is one of the key strategies for cancer treatment. The cGAS-cGAMP-STING-IRF3 pathway of cytosolic DNA sensing plays a pivotal role in antiviral defense. We report that the STING activator cGAMP possesses significant antitumor activity in mice by triggering the STING-dependent pathway directly. cGAMP enhances innate immune responses by inducing production of cytokines such as interferon-β, interferon-γ, and stimulating dendritic cells activation, which induces the cross-priming of CD8(+) T cells. The antitumor mechanism of cGAMP was verified by STING and IRF3, which were up-regulated upon cGAMP treatment. STING-deficiency dramatically reduced the antitumor effect of cGAMP. Furthermore, cGAMP improved the antitumor activity of 5-FU, and clearly reduced the toxicity of 5-FU. These results demonstrated that cGAMP is a novel antitumor agent and has potential applications in cancer immunotherapy
    • …
    corecore