30 research outputs found

    A Compact and Low Profile Loop Antenna with Six Resonant Modes for LTE Smart phone

    Get PDF
    In this paper, a novel six-mode loop antenna covering 660-1100 MHz, 1710-3020 MHz, 3370-3900 MHz, and 5150-5850 MHz has been proposed for the application of Long Term Evolution (LTE) including the coming LTE in unlicensed spectrum (LTE-U) and LTE-Licensed Assisted Access (LTE-LAA). Loop antennas offer better user experience than conventional Planar Inverted-F Antennas (PIFA), Inverted-F Antennas (IFA), and monopole antennas because of their unique balanced modes (1?, 2?, …). However, the bandwidth of loop antennas is usually narrower than that of PIFA/IFA and monopole antennas due to these balanced modes. To overcome this problem, a novel monopole/dipole parasitic element, which operates at an unbalanced monopole-like 0.25? mode and a balanced dipole-like 0.5? mode, is first proposed for loop antennas to cover more frequency bands. Benefiting from the balanced mode, the proposed parasitic element is promising to provide better user experience than conventional parasitic elements. To the authors’ knowledge, the balanced mode for a parasitic element is reported for the first time. The proposed antenna is able to provide excellent user experience while solving the problem of limited bandwidth in loop antennas. To validate the concept, one prototype antenna with the size of 75×10×5 mm3 is designed, fabricated and measured. Both simulations and experimental results are presented and discussed. Good performance is achieved

    Multimode Decoupling Technique with Independent Tuning Characteristic for Mobile Terminals

    Get PDF
    The isolation between antenna elements is a key metric in some promising 5G technologies such as beamforming and in-band full-duplex (IBFD). However, multimode decoupling technology remains a great challenge especially for mobile terminals. One difficulty in achieving multi decoupling modes is that the operating modes of closely-packed decoupling elements have very strong mutual effect, which makes the tuning complicated and even unfeasible. Thus, in physical principle, a novel idea of achieving the stability of the boundary conditions of decoupling elements is proposed to solve the mutual effect problem; in physical structure, a metal boundary is adopted to realize the stability. One distinguished feature of the proposed technique is that the independent tuning characteristic can be maintained even if the number of decoupling elements increases. Therefore, wideband/multiband high isolation can be achieved by using multi decoupling elements. To validate the concept, two case studies are given. In a quad-mode decoupling design, the isolation is enhanced from 12.7 dB to > 21 dB within 22.0% bandwidth by using a 0.295?0 Ă— 0.059?0 Ă— 0.007?0 decoupling structure. The mechanism of decoupling technique and the mutual effect between decoupling elements are investigated

    A Highly Integrated MIMO Antenna UnitA Highly Integrated MIMO Antenna Unit A: Differential/Common Mode Design

    Get PDF
    Abstract—A novel concept of antenna design, termed as differential/common mode (DM/CM) design, is proposed to achieve highly integrated multi-input multi-output (MIMO) antenna unit in mobile terminals. The inspiration comes from a dipole fed by a differential line which can be considered as a differential mode (DM) feed. What will happen if the DM feed is transformed into a common mode (CM) feed? Some interesting features are found in this research. By symmetrically placing one DM antenna and one CM antenna together, a DM/CM antenna can be achieved. Benefitting from the coupling cancellation of anti-phase currents and the different distributions of the radiation currents, a DM/CM antenna can obtain high isolation and complementary patterns, even if the radiators of the DM and CM antennas are overlapped. Therefore, good MIMO performance can be realized in a very compact volume. To validate the concept, a miniaturized DM/CM antenna unit is designed for mobile phones. 24.2 dB isolation and complementary patterns are achieved in the dimension of 0.330λ0×0.058λ0×0.019λ0 at 3.5 GHz. One 8×8 MIMO antenna array is constructed by using four DM/CM antenna units and shows good overall performance. The proposed concept of DM/CM design may also be promising for other applications that need high isolation between closely-packed antenna elements and wide-angle pattern coverage

    Use of Human Albumin Administration for the Prevention and Treatment of Hyponatremia in Patients with Liver Cirrhosis: A Systematic Review and Meta-Analysis

    No full text
    Background. Hyponatremia is a common complication of liver cirrhosis and aggravates patients’ outcomes. It may be corrected by human albumin (HA) infusion. Herein, we have conducted a systematic review and meta-analysis to evaluate the efficacy of intravenous HA administration for the prevention and treatment of hyponatremia in liver cirrhosis. Methods. Literature was searched in the PubMed, EMBASE, and Cochrane Library databases. If possible, a meta-analysis would be conducted. Incidence of hyponatremia, rate of resolution of hyponatremia, and serum sodium level were compared between cirrhotic patients who received and did not receive HA infusion. Odds ratios (ORs) or mean differences (MDs) with 95% confidence intervals (CIs) were calculated. The quality of evidence was assessed by the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system. Results. Initially, 3231 papers were identified. Among them, 30 studies, including 25 randomized controlled trials (RCTs) and 5 cohort studies, were eligible. Among cirrhotic patients without hyponatremia, the HA infusion group had significantly lower incidence of hyponatremia (OR = 0.55, 95%CI = 0.38–0.80, p = 0.001) and higher serum sodium level (MD = 0.95, 95%CI = 0.47–1.43, p = 0.0001) as compared to the control group. Among cirrhotic patients with hyponatremia, the HA infusion group had a significantly higher rate of resolution of hyponatremia (OR = 1.50, 95%CI = 1.17–1.92, p = 0.001) as compared to the control group. Generally, the quality of available evidence is low. Conclusions. Based on the current evidence, HA may be considered for preventing the development of hyponatremia in liver cirrhosis, especially in those undergoing LVP, and treating hyponatremia. Well-designed studies are required to clarify the effects of HA infusion on hyponatremia in liver cirrhosis

    Research on the Impact of Online Promotions on Consumers’ Impulsive Online Shopping Intentions

    No full text
    Online shopping has developed rapidly, but recently, the sales of some online stores have suffered due to the decrease in people’s income caused by the epidemic. How to grasp the psychology and behavior of consumers and formulate effective marketing strategies is important for increasing sales. This paper puts forward a research model and eight hypotheses based on the research on the promotion situation and the types of products promoted on consumers’ impulse shopping, and uses regression analysis, t-test, stepwise regression and analysis of variance to conduct data analysis. The results show that online promotion has a significant impact on consumers’ willingness, and the anticipated regrets in different directions have totally different effect on willingness; the type of product promoted, and the impulsive characteristics of consumers play a moderating role; online promotion affects consumers’ impulsive online shopping intentions through the intermediary effect of expected regret. The influence of anticipated regrets on impulsive online shopping intention is proposed creatively, and the results also provide e-commerce merchants and customers with new insights in managing and treating online promotions. Managerial implications like controlling the duration of promotions and the number of preferential goods are put forward based on our analysis

    Variations of Urban NO<sub>2</sub> Pollution during the COVID-19 Outbreak and Post-Epidemic Era in China: A Synthesis of Remote Sensing and In Situ Measurements

    No full text
    Since the COVID-19 outbreak in 2020, China’s air pollution has been significantly affected by control measures on industrial production and human activities. In this study, we analyzed the temporal variations of NO2 concentrations during the COVID-19 lockdown and post-epidemic era in 11 Chinese megacities by using satellite and ground-based remote sensing as well as in situ measurements. The average satellite tropospheric vertical column density (TVCD) of NO2 by TROPOMI decreased by 39.2–71.93% during the 15 days after Chinese New Year when the lockdown was at its most rigorous compared to that of 2019, while the in situ NO2 concentration measured by China National Environmental Monitoring Centre (CNEMC) decreased by 42.53–69.81% for these cities. Such differences between both measurements were further investigated by using ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) remote sensing of NO2 vertical profiles. For instance, in Beijing, MAX-DOAS NO2 showed a decrease of 14.19% (versus 18.63% by in situ) at the ground surface, and 36.24% (versus 36.25% by satellite) for the total tropospheric column. Thus, vertical discrepancies of atmospheric NO2 can largely explain the differences between satellite and in situ NO2 variations. In the post-epidemic era of 2021, satellite NO2 TVCD and in situ NO2 concentrations decreased by 10.42–64.96% and 1.05–34.99% compared to 2019, respectively, possibly related to the reduction of the transportation industry. This study reveals the changes of China’s urban NO2 pollution in the post-epidemic era and indicates that COVID-19 had a profound impact on human social activities and industrial production

    Oxidative removal of quinclorac by permanganate through a rate-limiting [3+2] cycloaddition reaction

    No full text
    Quinclorac, a widely used herbicide in agriculture, has been recognized as an emerging environmental pollutant owing to its long persistence and potential risk to humans. However, no related information is available on the degradation of quinclorac by employing oxidants. Herein, the reactivity of quinclorac with permanganate was systematically investigated in water by combining experimental and computational approaches. The reaction followed overall second-order kinetics pointing to a bimolecular rate-limiting step. The second-order rate constant was found to be 3.47 10 3 M 1 s 1 at 25 C, which was independent of pH over the range from 5 to 9 and was dependent on temperature over the range from 19 to 35 C. The initial product was identified by UPLC-Q-TOF-MS to be monohydroxylated quinclorac, which was more susceptible to further oxidation. The result could be supported by the complete simulation of the reaction process in DFT calculations, indicating the [3 + 2] cycloaddition oxidation of the benzene ring in the rate-limiting step. The plausible mechanism was then proposed, accompanied by the analysis of the HOMO indicating the hydroxylation position and of the ESP suggesting a more electron-rich moiety. Considering the high effectiveness and low toxicity, permanganate oxidation was considered to be a very promising technique for removing quinclorac from aquatic environments
    corecore