844 research outputs found

    The Value of Academic Directors to Stakeholders: Evidence on Corporate Social Responsibility Reporting

    Get PDF
    This study explores the regulatory setting in Taiwan and examines the association between academic directors and corporate social responsibility (CSR) reporting. We find that firms with academic directors on the board are more likely to issue a stand-alone CSR report and obtain third-party assurance on their CSR reports. We also find a positive association between CSR reporting and academic directors with industry expertise. Further cross-sectional analyses indicate that the positive relation between academic directors (and their industry expertise) and CSR reporting is stronger in firms with higher growth, greater institutional ownership, and lower control-ownership divergence. Our findings that the presence of academic directors can promote better sustainability reporting suggest that academic directors contribute not only to shareholder value but also to wider stakeholder interests

    Prostatic Relaxation Induced by Loperamide Is Reduced in Spontaneously Hypertensive Rats

    Get PDF
    This paper shows a new finding about the decrease of relaxative response to loperamide in prostate of spontaneously hypertensive rats (SHR) as compare to normal rats (WKY). Authors demonstrated the reduction of ATP-sensitive potassium channels is resposible for this change using immunoblotting analysis and the decrease of action induced by diazoxide. This view is not mentioned before and is the first one reporting this result

    High-throughput Automated Muropeptide Analysis (HAMA) Reveals Peptidoglycan Composition of Gut Microbial Cell Walls

    Get PDF
    Peptidoglycan (PGN), a net-like polymer constituted by muropeptides, provides protection for microorganisms and has been a major target for antibiotics for decades. Researchers have explored host-microbiome interactions through PGN recognition systems and discovered key muropeptides modulating host responses. However, most common characterization techniques for muropeptides are labor-intensive and require manual analysis of mass spectra due to the complex cross-linked PGN structures. Each species has unique moiety modifications and inter-/intra-bridges, which further complicates the structural analysis of PGN. Here, we developed a high-throughput automated muropeptide analysis (HAMA) platform leveraging tandem mass spectrometry and in silico muropeptide MS/MS fragmentation matching to comprehensively identify muropeptide structures, quantify their abundance, and infer PGN cross-linking types. We demonstrated the effectiveness of HAMA platform using well-characterized PGNs from E. coli and S. aureus and further applied it to common gut bacteria including Bifidobacterium, Bacteroides, Lactobacillus, Enterococcus, and Akkermansia muciiniphila. Specifically, we found that the stiffness and strength of the cell envelopes may correspond to the lengths and compositions of interpeptide bridges within Bifidobacterium species. In summary, the HAMA framework exhibits an automated, intuitive, and accurate analysis of PGN compositions, which may serve as a potential tool to investigate the post-synthetic modifications of saccharides, the variation in interpeptide bridges, and the types of cross-linking within bacterial PGNs.</p

    The characterization of the saddle shaped nickel(III) porphyrin radical cation: an explicative NMR model for a ferromagnetically coupled metallo-porphyrin radical

    Get PDF
    Ni(III)(OETPP˙)(Br)2 is the first Ni(III) porphyrin radical cation with structural and (1)H and (13)C paramagnetic NMR data for porphyrinate systems. Associating EPR and NMR analyses with DFT calculations as a new model is capable of clearly determining the dominant state from two controversial spin distributions in the ring to be the Ni(III) LS coupled with an a1u spin-up radical

    HbA1C Variability Is Strongly Associated With the Severity of Peripheral Neuropathy in Patients With Type 2 Diabetes

    Get PDF
    Variability in HbA1c is associated with a higher risk of cardiovascular disease and microvascular complications in patients with type 2 diabetes. The present study evaluated the severity of somatic nerve dysfunction at different stages of chronic glycemic impairment, and its correlation with different cardio-metabolic parameters. The study was conducted on 223 patients with type 2 diabetes. We calculated the intrapersonal mean, standard deviation (SD), and coefficient of variation of HbA1c for each patient using all measurements obtained for 3 years prior to the study. Patients were divided into quartiles according to the SD of HbA1c, and we constructed composite scores of nerve conduction as the severity of peripheral neuropathy. Linear regression analysis was performed to evaluate the influence of independent variables on mean composite scores. Those with higher SD-HbA1c had a higher body mass index, mean and index HbA1c, triglyceride and uric acid level, urinary albumin excretion and albumin-creatinine ratio, proportion of insulin therapy, and prevalence of hypertension as the underlying diseases, but lower estimate glomerular filtration rate (eGFR). In addition, those with higher SD-HbA1c showed lower amplitudes and reduced motor nerve conduction velocity in tested nerves, and lower sensory nerve conduction velocity in the sural nerve. Furthermore, those with higher SD-HbA1c had higher composite scores of low extremities. Multiple linear regression analysis revealed that diabetes duration, SD-HbA1c, and eGFR were independently associated with mean composite scores. Based on our results, HbA1c variability plus chronic glycemic impairment is strongly associated with the severity of peripheral neuropathy in patients with type 2 diabetes. Aggressively control blood glucose to an acceptable range and avoid blood glucose fluctuations by individualized treatment to prevent further nerve damage

    Early Detection of Tumor Response by FLT/MicroPET Imaging in a C26 Murine Colon Carcinoma Solid Tumor Animal Model

    Get PDF
    Fluorine-18 fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) imaging demonstrated the change of glucose consumption of tumor cells, but problems with specificity and difficulties in early detection of tumor response to chemotherapy have led to the development of new PET tracers. Fluorine-18-fluorothymidine (18F-FLT) images cellular proliferation by entering the salvage pathway of DNA synthesis. In this study, we evaluate the early response of colon carcinoma to the chemotherapeutic drug, lipo-Dox, in C26 murine colorectal carcinoma-bearing mice by 18F-FDG and 18F-FLT. The male BALB/c mice were bilaterally inoculated with 1 × 105 and 1 × 106 C26 tumor cells per flank. Mice were intravenously treated with 10 mg/kg lipo-Dox at day 8 after 18F-FDG and 18F-FLT imaging. The biodistribution of 18F-FDG and 18F-FLT were followed by the microPET imaging at day 9. For the quantitative measurement of microPET imaging at day 9, 18F-FLT was superior to 18F-FDG for early detection of tumor response to Lipo-DOX at various tumor sizes (P < 0.05). The data of biodistribution showed similar results with those from the quantification of SUV (standard uptake value) by microPET imaging. The study indicates that 18F-FLT/microPET is a useful imaging modality for early detection of chemotherapy in the colorectal mouse model
    corecore