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Projective Rectification with Minimal Geometric
Distortion

Hsien-Huang P. Wu and Chih-Cheng Chen 
National Yunlin University of Science and Technology 

Taiwan

1. Introduction     

There has been an increasing interest in the 3D imaging in the fields of entertainment, 
simulation, medicine, 3D visual communication, 3D tele-robotics, and 3D TV to augment the 
reality of presence or to provide vivid and accurate structure information. In order to 
provide vivid information in these and other 3D applications, efficient techniques to 
generate, store, and view the stereoscopic video are essential. While many methods are 
available for acquiring stereoscopic video, the images pairs obtained might not be in 
rectified form. Therefore, rectification is usually needed to support comfortable viewing and 
effective compression for storage and transmission. Projective geometry has been proved to 
be a useful tool for solving the rectification problem without camera calibration. However, if 
the matrices used for projective rectification (homographies) are not constrained properly, 
the rectification process can cause great geometric distortion. For visual applications, 
rectification with minimum geometry distortion should be pursued. In this chapter, we 
propose an improved algorithm to minimize the distortion by combining a newly 
developed projective transform with a properly chosen shearing transform. This new 
method is equipped with flexibility and can be adapted to various imaging models. 
Experimental data show that the proposed method works quite well for all the image pairs 
taken different imaging conditions. Comparison with other available method based on 
visual inspection and numerical data demonstrates the superiority of the new approach. 

2. Background 

Stereo vision is a technique for estimating 3D structure based on two or more images taken 
from different viewpoints, and are most often used in robotics and vehicle navigation. 
Stereoscopic videos are vastly used in entertainment, gaming, simulation, tele-conferencing, 
and tele-operation to augment the reality of presence. One of the major issues in the 
application of stereo imagery is correspondence problem. The correspondence problem is 
defined as locating a pair of image pixels from two different images, where these two pixels 
are projections of the same scene element. Given a point in one image, its correspondent point
(or point correspondence) must lie on an epipolar line in the other image. This relationship 
is well known as epipolar constraint (Faugeras, 1993). It is obvious that knowledge of this 
epipolar geometry, or codified as fundamental matrix, simplifies the stereo matching from a 
2-D area search to a 1-D search along the epipolar line. If the images are acquired from a 
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pair of identical cameras placed side-by-side and pointed in the same direction, known as a
rectilinear stereo rig, the epipolar lines will coincide with scan lines (x-axis) of the images. 
Given this ideal epipolar geometry, the correspondent points will lie on the same scan line 
in the two images. However, for an arbitrary placement of cameras, the epipolar lines are 
skew and the 1-D search will still be time consuming. Whether the imagery is used for 
stereo vision or stereoscopic video, we would like the image pair to be taken from an ideal 
epipolar-geometry.
When the epipolar geometry is not in ideal form, the image pairs can be warped to make 
correspondent points lie on the same scan lines. This process is known as image 
rectification, and can be accomplished by applying a 2D projective transforms, or 
homographies, to each image. The homography is a linear one to one transformation of the 

projective plane, which is represented by a ×3 3  non-singular matrix. The rectified images 

can then be treated as obtained by a rectilinear stereo rig and the correspondence problem is 
greatly simplified. Since most stereo algorithms assume input images having ideal epipolar 
geometry, image rectification is usually a pre-requisite operation for stereoscopic related 
applications. 
The idea of rectification has long been used in photogrammetry (Slama, 1980). The 
techniques originally used were optical-based, but now are replaced by software methods 
that model the geometry of optical projection.  The software-based photogrammetric 
approaches, similar to most of the computer vision ones, assume the knowledge of 
projection matrices or cameras parameters (Ayache & Hanse, 1988)(Ayache & Lustman, 
1991)(Fusiello, et al., 2000)These methods require camera parameters to compute a pair of 
homographies for transformations. The necessity of camera calibration is one of their 
disadvantages. 
In contrast to these traditional approaches, several researchers have developed techniques 
called projective rectification to rectify images directly without using camera parameters. They 
utilized the epipolar geometry of the acquired images and various criteria to compute the 
homographies. Robert et al. (Robert, 1997) attempted to find the transform that best 
preserves orthogonality around image centers.  Hartley (Hartley, 1999) proposed using 
minimization of the differences between matching points for the solution of homographies. 
He also gave a detailed theoretical presentation of the projective rectification. Loop and 
Zhang (Loop & Zhang, 1999) suggested decomposing each homography into projective and 
affine components. They then found the projective component that minimizes a defined 
projective distortion criterion. Gluckman and Nayar (Gluckman & Nayar, 2001) recently 
presented a stereo rectification method, which takes geometric distortion into account and 
tries to minimize the effects of resampling. Pollefeys (Pollefeys et al., 1999) proposed a 
simple and efficient algorithm for general two view stereo image.   The other available 

approaches include (Papadimitriou and Dennis, 1996) which considers only the 
special case of partially aligned cameras, and (Al-Shalfan et al., 2000) which requires 

the estimation of the epipolar geometry. Although these proposed methods provided many 
possibilities for projective rectification, they all solve the problem indirectly. That is, they 
must explicitly estimate the fundamental matrix before rectification. Since the solution of 
fundamental matrix has its own uncertainty (Zhang, 1998) this indirect approach might 
obtain unpredictable rectifying results.
Isgrò and Trucco (Isgrò & Trucco, 1999) adopted a different procedure and obtained 
homographies directly without first computing the fundamental matrix. However, in order 
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to solve the problem of uniqueness in rectification, their method requires disparity 
minimization along the x-axis to generate a unique solution. In certain applications, this 
modification of x-axis disparity in rectification might be harmless; however, in applications 
where original x-axis disparity must be maintained (e.g. for stereoscopic viewing purpose), 
this constraint will make the algorithm useless. Moreover, the enforcement of minimizing x-
axis disparity to obtain a single solution sometimes greatly distorts the image. 

In this chapter, we propose a different approach for rectifying two uncalibrated images with 
reduced geometric distortion. Its novelty is to formulate a new set of parameters for 
homographies, and solves the rectification problem using least square distance as a 
criterion. This new approach possesses similar advantage to that of the IT method (Isgrò & 
Trucco, 1999), that is, performing uncalibrated rectification without explicit computation of 
the epipolar geometry (fundamental matrix). However, the new method contains a shearing 
transform which greatly reduces geometric distortion caused by rectification. 

'll

Figure 1. Epipolar geometry of a pair of stereo images 

3. Epipolar geometry 

The derivation of our algorithm is presented from the viewpoint of projective geometry 
(Faugeras, 1993). The image point is expressed in homogeneous coordinate and represented 
by a 3-dimensional column vector. Column vectors are denoted by bold lower-case letters, 

such as m  and l . Matrices are represented by bold upper-case letter, such as F  and H .

Transposed vectors and matrices are expressed by adding a letter T as superscript, e.g., 
Tm and TF .

3.1 Epipolar constraint  

Consider two images I and ′I of a common scene. Let C  and ′C represent the optical 

centers of the left and right cameras in the 3D coordinate, respectively. Points m and ′m are

the projections of a certain 3D point M on the left ( I ) and right ( ′I ) images, as shown in 

Fig. 1. There are two points called the epipoles of the left and right images; one epipole ′e is

the point where the center of projection C of the left camera would be visible in the right 

image, and the other epipole e is the point where the center of projection ′C of the right 

camera is seen in the left image. In the 3D coordinate, e and ′e are the intersection points of 
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the baseline, ′CC , with the left and right image planes. Any plane that contains the baseline 

and a 3D scene point (e.g. M above) is called epipolar plane.

The epipolar lines ( l and ′l in Fig. 1) are defined as the intersection of the epipolar plane 

and the left and right image planes. The ray goes through the optical center of one camera 

( C ), which creates an image point ( m ) on the image plane, will generate an image of 

epipolar line on the other camera ( ′l ). One specific matrix called fundamental matrix

describes this mapping between points in one image and the corresponding epipolar line in 

the other image. Given the scene point M, and its two projections ( m and ′m ) on the left 

and right image planes, the epipolar constraint (Faugeras, 1993) asserts that point ′m  must lie 

on the epipolar line Fm and can be expressed as 

T′ =m Fm 0  or T T ′ =m F m 0   (1) 

Where F is called fundamental matrix, or F matrix, and 0 0 0
T

=0 is a zero column 

vector. The matrix F is a ×3 3  matrix with rank 2, and the epipoles for the left ( ∈ Ie ) and 

the right image ( ′ ′∈ Ie ) satisfy 

T ′= =Fe F e 0   (2) 

That is, the epipoles e  and 'e are the null space of F  and TF , respectively. Furthermore, all 

the epipolar lines ( l and ′l ) will pass the epipoles, or 

0T T′ ′= =l e l e  (3) 

3.2 Epipolar geometry after stereo image rectification 

Image rectification can be treated as a process of converting the epipolar geometry of an 
image pair into a canonical form. This can be done by applying a homography, which maps 
the epipole to a point at infinity, to each image. We designate these two epipoles after 

rectification as ∞e  and ∞′e , where 1 0 0
T

∞ ∞
′= =e e , and fundamental matrix of a pair of 

rectified images has the form of 

0 0 0

0 0 1

0 1 0
∞ = −F  (4) 

Let ( ), ′m m  be an image pair in the rectified images corresponding to the original ( ), ′m m

pair. From equation (1), the epipolar constraint after rectification can be rewritten as 

0T
∞

′ =m F m   (5) 

Meanwhile, the rectification can be accomplished by the following operations: 

=m Hm , ' '′ =m H m    (6) 
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where H and ′H are the rectifying homographies (or H matrices) for the left and right images, 

respectively. Combining (5) and (6) we obtain the following equation: 

 0T T
∞

′ ′ =m H F Hm  (7) 

Given several point correspondences, or ( ), ′m m  pairs, equation (7) can be solved to obtain 

homographies ( H and ′H ). However, solution for the pair of H matrices ( H , ′H ) is not 

unique. Some of the solutions are even far from ideal and can cause huge geometric 
distortion. Various approaches have been proposed to find a unique pair of homographies 

( H , ′H ) that minimize image distortion. This and other rectification related backgrounds 
are the topics of the next section. 

4. Image Rectification 

Several projective rectification methods have been proposed recently, and the backgrounds 
on these methods that are most related to our algorithm will be described below. On the 
basis of these methods, we propose our new approach to solving the projective rectification 
problem. 

4.1 Review of projective rectification 

Rectification based on epipolar geometry was originally developed by Hartley (Hartley, 
1999). In order to constrain the geometric distortion caused by rectification, Hartley 

proposed that one of the two homographies, say ′H , should be close to a rigid 

transformation in the neighborhood of a selected point 0p . That is, the homography for one 

of the image ( ′I ) can be represented by 

′ =H KRT  (8) 

where T is a translational vector taking 0p to the origin, R is a rotation matrix mapping the 

epipole to a point 1 0
T

f on the x-axis, and K is a transformation matrix mapping 

1 0
T

f to a point 1 0 0
T

at infinity along the x-axis . Moreover, matrix K can be 

expressed as 

1 0 0

0 1 0

0 1f

=

−

K  (9) 

In this way, ′H depends only on two parameters: f and rotation angle θ . If the translational 

vector T  is neglected, then ′H becomes

0

0

1

cos sin

sin cos

cos sinf f

θ θ

′ = − θ θ

− θ − θ

H  (10)  
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Given the F matrix, positions of the epipoles can be found by Equation (2). By following the 

above process, we can then obtain ′H to rectify the image ′I  by mapping the epipole ′e  to 

the infinite point 1 0 0
T

 and transforming the epipolar lines to lines parallel with the x-

axis. The next step is to find the matrix H  which can be applied to the other image to match 
up these new epipolar lines. 

The strategy that Hartley took to find H  (a matching transformation) is to minimize the 
sum-of-squared distances (Hartley, 1999): 

2( , )i i
i

d ′ ′Hm H m   (11) 

The searching of H  by minimizing 2
( , )i i

i

d ′ ′Hm H m  is not as straightforward as it seems. 

That is, the matrix H  is first decomposed into a form of = A 0H H H  where 

A 0 1 0

0 0 1

a b c

=H , and 0
′=H H M  (12) 

and AH  matrix represents an affine transformation. It was proven (Hartley, 1999) that F

matrix can be factorized as ×= [ ]F e M  where M  is a three-parameter family of non-singular 

matrices, and ×[ ]e is an antisymetric matrix generated from vector e  as follows:  

3 2

3 1

2 1

0

[ ] 0

0

e e

e e

e e
×

−

= −

−

e  (13)  

Note that 1 2 3[ ]Te e e=e  is the epipole of the image I . Therefore, instead of minimizing 
2( , )i i

i

d ′ ′Hm H m  directly, the following steps are taken: 

1. Matrix ′H  is found first.  
2. The feature points on both images are transformed by 

0
ˆ

ˆ

i i i

i i

′= =

′ ′ ′=

m H m H Mm

m H m
 (14) 

3. 2
A
ˆ ˆ( , )i i

i

d ′H m m is minimized to find the matrix AH by least square. (Note that this step 

would remove the x-disparity) 

4. Matrix H  is obtained by A 0=H H H

To further evaluate performance of the proposed algorithm, Hartley's method will be 
implemented and applied to the same sets of image pairs for comparisons in the later 
section of experiments. Algorithm of Hartley's approach has been briefly described above 
and is summarized below. 
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Outline of Hartley's Algorithm 

1. Identify a set of point correspondences { 1,i i i N′↔ =m m } between the two input 

images. Seven points at least are needed, though more are preferable. 

2. Compute the fundamental matrix F and find the epipoles e  and ′e  in the two images. 

3. Select a projective transformation ′H  that maps the epipole ′e  to the point at infinity 

on the x-axis, 1 0 0
T

.

4. Find the matching transformation H that minimizes the least-squares distance 
2

( , )i i
i

d ′ ′Hm H m .

5. Resample the first image according to the transformation H  and the second image 

according to the projective transformation ′H .
The number of parameter needs to be estimated is ten in the above process which includes 
the computation of matrix F that requires estimation of seven parameters. The Matlab codes 
for implementation of the Hartley’s method are available from (Hartley, 2004). 

4.2 Proposed method and F matrix parameterization 

In this section, taking a distinct approach in representing the matrix H , we propose a new 

method to solving the two homographies. Unlike the way H is parameterized in as 

= A 0H H H  in Hartley’s approach, the proposed method adopts a more direct form of 

parameterization for H , that is 

1 2 3

4 5 6

7 8 1

h h h

h h h

h h

=H  (15) 

Since the homography pair, H and ′H , are determined up to a scale factor, we can set 

′= =3 3 3 3 1( , ) ( , )H H . Combining equations (5), (6) and (7) gives us 

T T T T
∞ ∞

′ ′ ′ ′= = =m F m m H F Hm m Fm 0 , where T
∞

′=F H F H  (16) 

By following Hartley’s proposition that ′H is very close to a rigid transformation, as shown 

in (10), and substituting ∞F , ′H , and H in equations (4), (10) and (15) into F , we can 

parameterize and estimate F matrix as follows: 

1 2 3

4 5 6

7 8

4 7 5 8 6

4 7 5 8 6

4 5 6

0 0 0 0

0 0 0 1

1 0 1 0 1

cos sin

ˆ sin cos

cos sin

cos sin cos sin cos sin

sin cos sin cos sin cos

T
h h h

h h h

f f h h

h f h h f h h f

h f h h f h h f

h h h

θ θ

= − θ θ −

− θ − θ

− θ+ θ − θ+ θ − θ+ θ

= − θ− θ − θ− θ − θ− θ

F

  (17) 
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Obviously, the F matrix is determined by only seven parameters, as shown in vector form 

4 5 6 7 8

T
f h h h h h= θ  (18) 

However, due to the characteristics of ∞F , only five out of eight parameters in matrix H are 

obtained, which leaves the solution for H not unique.  To solve this uniqueness problem, 
Hartley’s method suggests minimizing the discrepancy after rectification, as is described in 
Equation (11). In contrast, we propose using shearing transform formulated in section 3.4 to 
obtain a unique solution. Our approach results in lower geometric distortion as will be seen 
in the result section. Note that we have combined the problems of rectification and 
estimation of F matrix. In the next subsection, we will show how to derive a least-square 
solution for the rectification problem from the viewpoint of F matrix estimation. This novel 
parameterization scheme combining with a shearing transform, leads to a unique solution. 

4.3 Projection rectification based on least square distance  

The quantity used in Hartley’s method for minimization, as shown in equation (11), is a 
linear criterion without physical meaning. In rectification, we would like the criterion to be 
something geometrically meaningful and to be measurable in the image plane. One such 

quantity is the distance from a point ′im  to its corresponding epipolar 

line 1 2 3

T

i i l l l′ ′ ′ ′= =l Fm , as shown in Fig. 2. This distance is given by the following 

equation:

( ) ( )
2 2 2 2

1 2 1 2

, ,
T T

i i i i
i i i id d

l l l l

′ ′ ′
′ ′ ′= = =

′ ′ ′ ′+ +

m l m Fm
m l m Fm     (19) 

Conversely, distance for a point im  to its corresponding epipolar line 

1 2 3

TT

i i l l l′= =l F m  is 

( ) ( )
2 2 2 2
1 2 1 2

, ,
T T T

T i i i i
i i i id d

l l l l

′
′= = =

+ +

m l m F m
m l m F m  (20) 

Figure 2. Distance from a point to the epipolar line of its correspondent point 

i
m

i
d

i i
′=l Fm

i
′m

i
d′ i i

′ =l Fm

I I′
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Minimization of this distance is originally used to estimate F matrix (Zhang, 1998), which 
generates 36 possible modes of solution. Surprisingly, it turns out to be a very good H matrix
estimator with a unique solution under our new formulation. We now demonstrate how to 
find the solution by minimizing the distance defined above.  
To prevent inconsistency of the epipolar geometry between the left and right images, we 
choose to operate simultaneously on both images and minimize the mean-square distance. 
Hence, the problem becomes 

( ) ( )( )2 21
min

2
, , T

i i i
i

d d′ ′+
F

m Fm m F m  (21) 

Using equations (19), (20) and the fact that ′Ti im Fm ′= T T
i im F m , we reformulate the 

minimization problem in (21) as: 

( ) ( ) ( )
2 2 2

2 2 2 2
1 2 1 2

1
min min

2 2

T T T T
i i i i i i

i
i i

w
l l l l

′ ′ ′
+ =

′ ′+ +F F

m Fm m F m m Fm
  (22) 

where
2 2 2 2
1 2 1 2

1 1
iw

l l l l
= +

′ ′+ +
.

Given N point correspondences from the image pair ( ′↔ = 1,i i i Nm m ), the search for 

parameter vector , which is to be used in = ( )F F , ( )H = H , and ′ ′( )H = H ,

becomes a nonlinear optimization problem, that is 

2

1

1 ( )
min

2

TN
i i

i
i

w
N =

′

F

m Fm
 (23) 

To simplify the derivation, we can restructure the matrix equation by turning a matrix into a 

vector.  Assume that the ×3 3 fundamental matrix in vector form is = 1 2 3F F F F ; then 

we can use vec operator to convert the matrix F into a column vector f by stacking the 

columns of F , or 

1

2

3

( )= =

F

f vec F F

F

 (24) 

Let symbol ⊗  denote Kronecker product; then 

( )
TT

i i i i
′ ′= ⊗m Fm m m f  (25) 

Substituting (25) into (23) yields the objective function in vector form. That is 

2
2

1 2 2 1 2

1 1

1 ( ) 1 1
( )

2 2 2
/ /

TN N
Ti i

i i i i N
i i

w w
N N N= =

′
′= =

m Fm
m Fm W U f   (26)  

where W is an N N× diagonal matrix and NU  is an × 9N matrix : 
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1

2

1 2

0 0

0 0
diag

0 0

0 0

N

N

w

w
w w w

w

= =W  ,

( )

( )

( )

1 1

2 2

T

T

N

T

N N

′ ⊗

′ ⊗
=

′ ⊗

m m

m m
U

m m

.

Given these new notation, minimization of the mean-square distance in (23) can now be 
rewritten as 

2
1 21

2
/min N

Nf
W U f  (27) 

The solution for f in (27) can be found by any standard nonlinear minimization method. We 
chose the Levenberg-Marquardt algorithm because of it effectiveness and popularity. Before 
applying this minimization process, we need to derive the Jacobian matrix of (26), or 

∂

∂

1 2/( )NW U f . In order to simplify the computation of this Jacobian matrix, we modify 

our iteration of the minimization process by using the old W value from the previous 
iteration to compute the new Jocobian matrix. That is, 

{ }1 2 1 2
1 1

/ /( ) ( ) ( ) ( )k N k k N k

k k

− −

∂ ∂
=

∂ ∂
W U f W U f

Therefore, even though W is a function of , we can treat it as a constant to  in current 

iteration. Since factor 1 2/
NW U  inside the partial derivative can be treated as constant 

for , the Jacobian matrix can then be reduced to a simpler form 

1 2 1 2/ /( ) ( )N N

∂ ∂
=

∂ ∂
W U f W U f  (28) 

Therefore, we only need to compute 
∂

∂
f  for the Jocobian matrix of (26) as follows  

4 7

4 7

4

5 8

5 8

5

6

6

6

4 4 7

4 4 7

0 0 0

0 0 0

0

cos sin

sin cos

cos sin

sin cos

cos sin

sin cos

cos sin cos cos sin

sin cos sin sin cos

h f h

h f h

h

h f h

h f h

h

h f

h f

h

h h f h f

h h f h f

− θ + θ

− θ − θ

− θ + θ
∂ ∂

− θ − θ=
∂ ∂

− θ + θ

− θ − θ

− θ θ + θ − θ θ

− θ − θ + θ − θ − θ

=

f

5 5 8

5 5 8

6 6

6 6

0 1 0 0 0 0

0 0 0

0 0 0

0 0 0 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 1 0 0

cos sin cos cos sin

sin cos sin sin cos

cos sin cos cos

sin cos sin sin

h h f h f

h h f h f

h h f f

h h f f

− θ θ + θ − θ θ

− θ − θ + θ − θ − θ

− θ θ + θ − θ

− θ − θ + θ − θ

          (29) 
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 The Jacobian matrix can be obtained by substituting (29) into (28), which is then used in an 

iterative process of Levenberg-Marquardt algorithm to find the parameter vector . This 

minimization algorithm contains an iterative process, which must start with an initial 
estimate of the F matrix, and the ideal F matrix of a pair of rectified images can be used, that 
is,

0

0 0 0

0 0 1

0 1 0

ˆ
∞= − =F F

A comparison of 0F̂ with the parameterization of F̂ in (17) shows that 0F̂ corresponds to an 

initial parameter vector of = θ0 4 5 6 7 8
T

f h h h h h = 1 0 0 1 0 0 0
T

.

An iterative process can now be applied to find the solution of  after proper stop 
conditions have been set. 

4.4 Homography with minimal geometric distortion 

After the parameter vector = θ 4 5 6 7 8
T

f h h h h h  has been found, the values of 

the vector can be used to calculate the pair of rectifying homographies shown as below 

1 2 3

4 5 6

7 8 1

h h h

h h h

h h

=H ,

0

0

1

cos sin

sin cos

cos sinf f

θ θ

′ = − θ θ

− θ − θ

H   (30) 

Obviously, the only parameters left to be estimated are 1 2 3[ ]h h h . Since this vector does 

not affect the coordinate of y-axis, we can simply set it to [1 0 0]  and obtain satisfactory 

rectifying results. However, to achieve a certain purpose, we can apply specific constraint on 

the transformed coordinate of x-axis and obtain different values for 1 2 3[ ]h h h . For 

example, minimization of equation (11) has been used as an extra constraint to reduce the 
disparity of x-axis between two rectified images. This approach can reduce the range of 
search for stereo matching and increase the speed on solving the correspondence problem. 
However, in applications where the x-axis disparity should not be modified too much, other 

constraint can be used for acquiring the values of 1 2 3[ ]h h h . One suitable constraint is to 

keep the aspect ratio of the original image invariant after rectification. We will adopt the 
idea of shearing transform described in (Loop & Zhang, 1999) to achieve this purpose, and 
the procedure will be stated below. As will be shown in the experimental section, this 
approach not only maintains the aspect ratio of the original image but also reduces the 
overall geometric distortion. 

Assume that the parameter vector = θ 4 5 6 7 8
T

f h h h h h  has been found by 

following the procedure described in the previous section. Let 1 2 3[ ]h h h = [1 0 0] ;

then we have a preliminary solution of homographies   
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0 4 5 6

7 8

1 0 0

1

h h h

h h

=H , 0

0

0

1

cos sin

sin cos

cos sinf f

θ θ

′ = − θ θ

− θ − θ

H

To keep the aspect ratio invariant after rectification, these two homographies can further be 
combined with the shearing transform defined below 

0

0 1 0

0 0 1
s

a b

=H

0

0 1 0

0 0 1
s

a b′ ′

′ =H  (31) 

The final homographies for the rectification can then be written as 

0 0

0

0 1 0

0 0 1
s

a b

= =H H H H 0 0

0

0 1 0

0 0 1
s

a b′ ′

′ ′ ′ ′= =H H H H   (32) 

Using 0H  and ′0H  alone can rectify the image pair such that the coplanar condition is 

satisfied; however, combined with sH  and ′sH  respectively, we can further improve the 

appearance of the final rectification results. A detailed description of the shearing transform 
can be found in (Loop & Zhang, 1999), but its adaptation to our usage will be briefly 
described below.  

Figure 3. Center points used for computing shearing transform matrices 

For a given image with width w and height h, coordinates of the midpoints on its four 
boundaries are shown in Fig. 3 and can be represented as   

1
0 1

2

-
T

w
=a , 1

1 1
2

T
h

w
−

= −b , 1
1 1

2

T
w

h
−

= −c , 1
0 1

2

T
h −

=d

The two central lines are expressed as 

= −x b d = -y c a

Let â , b̂ , ĉ , d̂  be the coordinates of these four midpoints after transformation by 0H , or 

a

b

c

d
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The other three points ( b̂ , ĉ , d̂ ) can be found by the same way, and the two central lines 

after rectification become 

0ˆ ˆˆ
T

u vx x= − =x b d , 0ˆ ˆˆ
T

u vy y= − =y c a

The perspective component of 0H causes the projective rectification to generate distortion, 

and the shearing transform sH , which is used to reduce the distortion, can be found by 

satisfying the following two constraints: 

 1. Orthogonal::                            Tx y = 0ˆ ˆ( ) ( )T
s s =H x H y  (34) 

 2. Invariant aspect ratio:      
T

T

x x

y y
=

2

2

w

h

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

T

s s

T

s s

=
H x H x

H y H y
 (35) 

where

0

0 1 0

0 0 1
s

a b

=H . Expanding equations (34), (35) and solving the quadratic 

polynomials of a and b based on the techniques similar to that were described in (Loop & 
Zhang, 1999), we obtain 

2 2 2 2h w

hw( )

v v

v u u v

x y
a

x y x y

+
=

−
,

2 2h w

hw( )

u v u v

u v v u

x x y y
b

x y x y

+
=

−
  (36) 

Substituting ,a b  into equation (31) yields shearing transform matrix sH . In order to make 

all the rectified pixels appear within the visible range, a must be positive. If a is a negative 

value, then both a and b are multiplied by -1. Elements a’ and b’ of matrix ′sH  can be found 

by the same way. After sH  and ′sH  were obtained, the final homographies used for 

rectification with minimal distortion become = 0sH H H , ′ ′ ′= 0sH H H . They then can be used 

for resampling to complete the process of projective rectification.  

5. Results and discussion 

To evaluate performance of the proposed method, several indoor image pairs acquired from 
the INRIA web site and CMU (please see Acknowledge section) were tested. For each image 
pair, a set of ten point correspondences were selected from each image and used to compute 
the H matrices for rectification. Selection of these point correspondences takes a semi-
automatic approach to avoid inaccuracy. That is, each point is chosen approximately by 
hand, and then a precise (subpixel accuracy) feature point close-by is then detected by 
Harris corner finder (Harris, 1998) inside a local search window. This approach not only 
makes the selection very easy, it also greatly improves the accuracy. To achieve the best 
results, these points are chosen to be evenly distributed over the entire image area. 
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5.1 Visual evaluation of rectifying results 

The original and rectified image pairs are shown in Figures 4~8 for visual comparison, 
where the top is the original image pair, the middle and the bottom are the rectified results 
of the method proposed and the Hartley’s method, respectively. To achieve a more robust 
estimation of F matrix in Hartley’s method, RANSAC (Torr &  Murry, 1997) is used. 

RANSAC calculates for each F the number of inliers, in which the chosen F is the one that 

maximizes it. Once the outliers are removed, F is recalculated with the aim of obtaining a 

better estimation. The solution for the pair of homogphies in the proposed method can be 
found in less than 100 iterations by Levenberg-Marquardt algorithm, and the re-sampling 
can be done in real time by look up table. As shown in these figures, all the re-sampled 
image pairs are properly rectified by the proposed method with minimal geometric 
distortions. In order to make visual evaluation of the rectified results more convenient, four 
horizontal lines are added to identify the difference of y-disparity before and after 
rectification.  
In all the figures, it’s obvious that our proposed method has less geometric distortion than 
that of Hartley’s method. In Fig. 4, the Hartley’s method greatly distorts the right image in 
the process of minimizing x disparity. Our method shows its capability in maintaining the 
angle and aspect ratio of the objects in the scene. However, the Hartley’s method is not able 
to keep these properties invariant. The main reason for the distortion after rectification is 
because the image content contains a variety of depth values and therefore many different 
amounts of y-disparity. When the rectification algorithm tries to minimize the disparity all 
over the image region, distortion occurs. Overall, the proposed method keeps the objects in 
better shape than that of the Hartley’s method. The greater geometric distortion of the 
Hartley’s method is due to its minimization of the x-disparity. 

5.2 Quantitative evaluation of rectifying results 

In addition to the above visual comparisons, quantitative evaluation based on the changes in 

y disparity is also conducted as follows. The ( ),x y coordinates for the ten chosen point 

correspondences in one image pair (Balmouss) before and after rectification by the proposed 
method are shown in Tables 1 for numerical evaluation. Obviously, the x disparities for the 
selected points have not changed too much after rectification. To estimate the accuracy of 
the rectification process numerically, we define the mean of the absolute difference (MAD) 

of y coordinate,| |y∆ , for the original and rectified image pair as 

1

1

1
|( ) ( ) : original

1
|( ) ( ) : rectified

|

| |

|

N

org i y i y
i

N

rec i y i y
i

N
y

N

=

=

′ε = −

∆ =

′ ′ε = −

m m

Hm H m

 (37) 

where ( )y⋅ indicates the y coordinates and ( ),i i
′m m  represents the coordinates of the ith pair of the 

point correspondences.  
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Figure 4. Aout image pair of INRIA. (a)Top row: original images. (b)Middle row: rectified 
images using the proposed method. (c)Bottom row: rectified images using Hartley’s 
method. The proposed method has much lower visual distortion. 
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Figure 5. Rectifying results of the castle image from CMU/CIL (vary large y-disparity)  

(a) Top row: original images.  

(b) Middle row: rectified images using the proposed method.  

(c) Bottom row: rectified images using Hartley’s method. 
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Figure 6. Rectifying results of the BalMouss image pair 

(a) Top row: original pair of images.  

(b) Middle row: rectified images using the proposed method. 

(c) Bottom row: rectified images using Hartley’s method  
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Figure 7. Rectifying results of Rubik image pair from INRIA  

(a) Top row: original images.  

(b) Middle row: rectified images using the proposed method.  

(c) Bottom row: rectified images using Hartley’s method 
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Figure 8. Rectifying results of Tot image pair from INRIA  

(a) Top row: original images.  

(b) Middle row: rectified images using the proposed method. 

(c) Bottom row: rectified images using Hartley’s method 
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A desirable property of the method is to minimize the | |y∆ , but keep the value of | |x∆

invariant after rectification. When these ten chosen point correspondences were used for 

| |y∆  computation, the results before and after rectification for the above six image pairs are 

listed in Table 2. If an image pair is ideally rectified, | |y∆  of the point correspondences after 

rectification should be zero. As can be seen from the table, for all the image pairs, values of 

| |y∆  after rectification of our proposed method ( recε ) are all less than 1 pixel. They are 

greatly reduced compared with the values before rectification ( orgε ), indicating the 

effectiveness of the proposed method. However, some image pairs can not be satisfactorily 
rectified by the Hartley’s method.  

Before rectification 

x-axis 127 136 231 253 411 271 275 361 528 736 Left 
image y-axis 91 533 336 312 65 321 481 349 499 93 

x-axis 55 64 208 235 255 255 297 320 508 587 Right
image y-axis 77 501 302 277 49 286 428 307 426 69 

After rectification 

x-axis 127.37 136.81 233.38 256.66 419.84 274.49 278.59 368.33 543.28 766.42 Left 
image y-axis 77.376 509.38 318.49 295.32 53.493 304.77 462.15 333.97 487.31 82.733 

x-axis 54.952 63.16 217.2 248.1 271.86 270.85 317.76 345.53 576.92 682.91 Right
image y-axis 77.7 509.42 318.34 294.79 53.058 305.45 462.12 333.87 487.32 82.917 

Table 1. Coordinates of point correspondences before and after rectification for Balmouss

image pair based on the proposed method. 

Table 2. MAD of y-coordinate before ( orgε ) and after rectification with the proposed ( recε ) or 

Hartley’s  method ( _rec Hε ). Evaluation based on 10 selected point correspondences.  

6. Comparisons and discussion 

Compared with the results presented in Hartley (Hartley, 1999), our new method has the 
following advantages:  

     Image 
          name 

MAD_y

Aout Image 
pair

Castle image 
pair

Balmouss 
Image pair 

Rubik image 
pair

Tot image 
pair

orgε (pixel) 13.6 26.7084 35.8598 12.8 13.9577 

recε (pixel) 0.6322 0.5084 0.2477 0.6389 0.2779 

_rec Hε (pixel) 14.9539 0.4731 21.8769 14.2357 4.8668 
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1. Our method has much less geometric distortion visually, even when the image pair has 
large difference of viewpoints (Fig. 4). Further comparisons with the Hartley’s method 
on geometric distortion are presented in Figs. 5-8 using four other image pairs.   

2. The new method avoids using the similar constraint shown in (11) in order to obtain a 
unique solution. This extra x-axis disparity minimization step, which is used in deriving 
the Hartley’s method, will be unreasonable if the rectified result is used for stereoscopic 
viewing. Instead of minimizing x-axis disparity, shearing transform is used in our 
algorithm to preserve aspect ratio and reduce geometric distortion.   

3. Solving the rectification problem directly without first computing the F matrix makes 
the proposed method avoid the problem of selecting proper method for F matrix 
estimation.

4. Initial value of the nonlinear solution by iteration is much easier to set. The initial 

parameter vector 0  is simply set to 1 0 0 1 0 0 0
T

.

We use the same initial guess of the optimization process for all the images tested and the 
solutions always converge. The iteration stops after the error is smaller than a preset 
threshold. Although we are not sure if the true minimum is obtained, the rectified results 
show its robustness, even for image pair with very different view like Fig. 4. Since we are 
not looking for the true minimum to obtain an optimal solution, the convergence towards 
the true minimum is not guaranteed. If further improvement is needed, some approaches 
which can avoid local minimum might be taken. 
Most of the projective rectification methods proposed all base their algorithms on an 
estimation of the F matrix. However, as has been stated in (Zhang, 1998), the F matrix 
estimator has its own uncertainty. Our approach, similar to the IT method (Isgrò & Trucco, 
1999), avoids F matrix estimation procedure and obtains homographies directly. 
Furthermore, it improves on the Hartley’s method and obtains rectifying results with 
reduced geometric distortion. 

7. Conclusion 

This chapter presented a new way of parameterizing the homography, which leads to a new 
approach of projective rectification for stereo images. Compared with the previous works, 
the novelty of this new algorithm is that it uses mean-square distance as minimization 
criterion which has more well-defined geometric meaning. Furthermore, instead of putting 
constraint on x-axis disparity, we use shearing transform to achieve a single solution for the 
projective rectification problem, and greatly reduce the geometric distortion. Visual 
inspection and quantitative evaluation of the rectification results show the accuracies of the 
proposed method and its low geometric distortion. Experiments on different types of image 
pairs with various y-disparity values have been conducted, and the results show that the 
proposed method can effectively reduce the geometric distortion. 
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