ChemComm

View Article Online

COMMUNICATION

Cite this: Chem. Commun., 2014, 50, 14265

Received 4th September 2014, Accepted 23rd September 2014

DOI: 10.1039/c4cc06993e

www.rsc.org/chemcomm

The characterization of the saddle shaped nickel(III) porphyrin radical cation: an explicative NMR model for a ferromagnetically coupled metallo-porphyrin radical[†]

Ru-Jen Cheng,*‡ Chiao-Han Ting, Ten-Chih Chao, Tzu-Hsien Tseng and Peter P.-Y. Chen*

Ni(III)(OETPP*)(Br)₂ is the first Ni(III) porphyrin radical cation with structural and ¹H and ¹³C paramagnetic NMR data for porphyrinate systems. Associating EPR and NMR analyses with DFT calculations as a new model is capable of clearly determining the dominant state from two controversial spin distributions in the ring to be the Ni(III) LS coupled with an a_{1u} spin-up radical.

Nickel(m) porphyrinate derivatives have been extensively studied to understand a postulated intermediate of Factor 430 (F_{430}) and a CH₃-Ni(III) tetrapyrrole as the cofactor of methyl coenzyme M reductase.¹ Although the redox properties of many Ni(III) porphyrinate systems are well discussed, structural and magnetic spectroscopy data, especially NMR, are scarce and a stable Ni(III) porphyrin radical cation has not been obtained.² Recently some essential strategies have been developed by combining ¹³C and ¹H NMR data with DFT calculations, which are capable of completely characterizing the metal dominated spin system.³ For the spin-coupled metalloporphyrin radical cations of considerable interest, e.g. compound I and its model complex, oxoiron(IV) porphyrin radical cations, although quality ¹H NMR data have been obtained, only qualitative bonding interactions between metal d orbitals and ring π orbitals of the macrocyclic ring are discussed, since some very down- or upfield NMR signals with regard to the structural positions which share more ring radical spin are difficult to fully understand due to the lack of a neat method for discriminating spin transfer from bonding or spatial induction.⁴ To gain the knowledge of spin-coupled metalloporphyrin cations, a reliable analytical model by adopting Ni(m)(OETPP[•])(Br)₂ is constructed by combining EPR zero-field splitting (D), paramagnetic ¹H and ¹³C NMR data with DFT calculations.

‡ Ru-Jen Cheng (deceased).

The saddle-shaped OETPP (the dianion of 2,3,7,8,12,13,17,18octaethyl-5,10,15,20-tetraphenyl-porphyrin), which has been noted to be easily oxidized to form a stable π -cation radical with the antiferromagnetic coupling state, e.g. Cu^{II}(OETPP[•])·ClO₄ with S = 0, $[Fe(III)(OETPP^{\bullet})CI]^+$ and $Fe(III)(OETPP^{\bullet})(ClO_4)_2$ with S = 2, is adopted in this study.^{3d,5} Ni(III) porphyrin π -cation radicals have only been generated and identified by electrochemical oxidation.^{2,6} Nevertheless, the Ni(II)(OETPP) complex can be readily one-step oxidized by two electrons via adding one equiv. of Br₂ in benzene solution, as evidenced by several isosbestic points in absorption spectral changes (Fig. S1, ESI⁺). The X-ray crystal structures of Ni(OET(p-R)PP)(Br)₂ (R = H and CH₃) (Fig. 1 and Fig. S2, ESI[†]) all reveal six-coordinate geometries, for which orbitals coincide with D_{2d} symmetry (Table S1, ESI[†]). The detailed X-ray data and structural information are collected in Tables S2–S7 (ESI^{\dagger}). The D_{2d} symmetry is further shown by the following NMR data with high symmetric patterns.^{7a} The variable-temperature magnetic data (Fig. S3, ESI[†]) show a magnetic moment of 2.63 $\mu_{\rm B}$ at 300 K, referred to as the S = 1 state. The 77 K EPR spectrum also displays a ferromagnetically coupled signal with simulated g_x , g_y , and g_z values of 2.21, 2.10 and 2.13, respectively, and a ZFS (D) of 0.034 cm^{-1} (Fig. S4(a) and (b), ESI⁺). With S = 1 the electronic configuration of Ni(m)(OETPP[•])(Br)₂ can be either rationally assumed to be of

Fig. 1 ORTEP representation of the structure of Ni(OETPP)(Br)₂ with 50% probability ellipsoids. Hydrogen atoms are omitted for clarity.

Department of Chemistry, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan. E-mail: pychen@dragon.nchu.edu.tw;

Fax: +886-4-22862547; Tel: 886-4-2285-7300

[†] Electronic supplementary information (ESI) available: Syntheses, UV-Vis spectra, X-ray crystal data, ¹H NMR and ¹³C NMR spectra, and DFT calculations. CCDC 1001656 and 1021469. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4cc06993e

Chemical shifts (in ppm) $Ni(m)(OETPP^{\bullet})Br_2, S = 1$ $[Fe(m)(OETPP)(THF)_2]^+, S = 3/2^{3a,b,9}$ $Fe(m)(OETPP^{\bullet})(ClO_4)_2, S = 2^8$		$\begin{array}{c} -CH_2-\\ 20.3, \ 9.8 \ (12.98)\\ 38.7, \ 11.1 \ (22.85)\\ 91.4, \ 23.8 \ (55.53) \end{array}$		$\begin{array}{c} -CH_3 \\ \hline 3.0 \ (3.08) \\ 0.3 \ (0.38) \\ 6.2 \ (6.28) \end{array}$	<i>о</i> -Н 11.6 (3.47) 15.8 (7.70) 33.5 (25.4)		<i>m</i> -H 6.0 (-1.58) 5.6 (-1.98) -7.7 (-15.36)		<i>р-</i> Н	<i>р</i> -СН	<i>p</i> -CH ₃ -0.65 (-3.18)	
									10.0 (2.34 11.5 (3.84 26.9 (19.2) -0.6) 4)		
	C _{meso}	\mathbf{C}_{α}	C_{β}		q-C	<i>о</i> -С		<i>т</i> -С	<i>р</i> -С	$-CH_2$	$-CH_3$	
Ni(III)(OETPP•)Br ₂	-296.3 (-416.1)	492.2 (342.0)	Not ide	entified	345.8 (206.2)	44.6 (-8	; 9.9)	$131.9 \\ (4.8)$	128.3 (-6.8)	66.9 (47.8)	79.7 (63.1)	
$[Fe(OETPP)(THF)_2]^+$	-269 (-389)	394 (244)	215 (67)		354 (214)	-74 $(-2$	10)	118 (-9)	116 (-12)	$^{-55}_{(-75)}$	215 (198)	

Table 1 ¹H and ¹³C NMR chemical shifts, δ_{obs} and (isotropic shifts, δ_{iso}) of Ni(III)(OETPP•)(Br)₂ and six-coordinate iron(III)OETPP complexes

Diamagnetic shifts were taken from the reference complex of [Co(m)(OETPP)(Im)2](ClO4) (Table S10, ESI).

the Ni(III) HS state $(d_{xy}^2 d_{xz,yz}^3 d_{z^2}^{-1} d_{x^2-y^2}^{-1}, S = 3/2)$ coupled with an antiparallel a_{2u} radical due to the same symmetry of the $d_x^2 d_{x^2-y^2}^{-1}$ orbital and the a_{2u} orbital, or to be of the Ni(III) LS state $(d_{xy}^2 d_{xz,yz}^4 d_{z^2} d_{x^2-y^2}^{-1}, S = 1/2)$ orthogonally interacting with a parallel a_{1u} radical.

The chemical shifts of all distinct protons are characterized by adopting d₂₀ phenyl-deuterated and para-substituted OETPPs (Fig. S5 and S6, ESI[†]). The ¹³C NMR spectrum also represents a broad range of shifts; especially the meso-C carbon signal appears at -296 ppm (Fig. S7, ESI⁺), indicating a considerable negative spin density localized on the ring. Interestingly, the pattern of the ¹H or the ¹³C NMR spectrum is analogous to that of the six-coordinate $Fe(III)(OETPP^{\bullet})(ClO_4)_2$ radical cation (Table 1),⁸ which was identified as an antiferromagnetic coupling S = 2 spin state constituted by a high-spin iron (S = 5/2) and a ring a_{2u} radical (S = 1/2), and also similar to that of the six-coordinate $[Fe(OETPP)(THF)_2]^+$ with the S = 3/2spin state concentrated on the iron center, ^{3a,b,9} whose unexpected NMR shifts have been ascribed to d_{xy}-a_{1u} orbital interactions from DFT calculations with the presumably coexisting $d_{x^2-y^2}-a_{2y}$ interactions *via* spin polarization.⁷ Neverthe less, the ethylene protons $(-CH_2)$ at the β -pyrrole of Ni(m)(OETPP)Br2 shift downfield by 15 ppm compared to the 58 ppm shift of the protons of $Fe(III)(OETPP^{\bullet})(ClO_4)_2$, for which this large shift was induced by σ bonding delocalization from a half-occupied spin in $d_{x^2-y^2}$, and the 25 ppm shift of the protons of $[Fe(m)(OETPP)(THF)_2]^+$, for which low spin density is rationally held in the $d_{x^2-y^2}$ orbital. By contrast, the ¹³C NMR spectra of Ni(m)(OETPP[•])(Br)₂ and [Fe(m)(OETPP)(THF)₂]⁺ are pretty similar in range and pattern (Fig. S6, ESI⁺). These comparisons suggest a very low spin density localized on the $d_{x^2-v^2}$ orbital.

DFT combined with paramagnetic NMR analysis has recently been shown to have a prominent ability to interpret the detailed paramagnetic shifts for iron(m) porphyrins.^{3d} The compositions of ¹H and ¹³C paramagnetic shift terms for S = 1 have been defined using the following equations, which are shown in detail in the ESI.[†] ^{3d,10}

$$\begin{split} \delta_{\rm obs} &= \delta_{\rm dia} + \delta_{\rm iso}; \\ \delta_{\rm con} &= \frac{2\mu_0 g_{\rm c}^2 \mu_{\rm B}^2}{9kT} \rho_{\alpha\beta} \end{split} \tag{1}$$

$$\delta_{\rm dip}^{\rm L.C.} = -\frac{g_{\rm e}\beta D(211)}{9g_{\rm N}\beta_{\rm N}(kT)^2}\rho^{\pi} = -48.54 \left(\frac{\rm ppm}{\rm cm^{-1}}\right) \times D \times \rho^{\pi} \qquad (2)$$

$$\delta_{\rm dip}^{\rm M.C.} = -\frac{\mu_0}{4\pi} \frac{g_{\rm e}^2 \mu_{\rm B}^2 DG}{9(kT)^2} = -4.486 \times 10^{-3} \left(\frac{\rm ppm}{\rm cm^{-1}} \cdot \rm cm^3\right) \times D \times G$$

$$G = \left[\frac{(3\cos^2\theta - 1)}{r^3}\right] / (10^{21}) \,\mathrm{cm}^{-3} \tag{3}$$

where $\delta_{\rm obs}$ is the observed NMR chemical shift, containing the diamagnetic reference, δ_{dia} , and the isotropic shift, δ_{iso} . The isotropic component (δ_{iso}) includes the Fermi-contact term and pseudo-contact dipolar terms ($\delta_{dip}^{M.C.}$ and $\delta_{dip}^{L.C.}$), which are induced by metal-porphyrin bonding and magnetic spatial induction via spin centers, respectively. In the above equations, $\rho_{\alpha\beta}$ refers to the unpaired spin density at zero distance from the nucleus, μ_0 is the vacuum permeability ($4\pi \times 10^{-7} \text{ J}^{-1} \text{ T}^2 \text{ m}^3$), g_e is the free electron g-factor (2.0023), $\mu_{\rm B}$ is the Bohr magneton $(9.2740 \times 10^{-24} \text{ J T}^{-1})$, D is the zero-field splitting and k is Boltzmann's constant, and T is the absolute temperature (298 K for this study). In the two pseudocontact terms, g_N is the nucleus g-factor (g_N for ¹³C equal to 1.4048), β_N is the nuclear magneton (5.0508 \times 10⁻²⁷ J T⁻¹), 2 Π refers to the *z* component of dipolar interaction for a unit unpaired spin residing in a 2p_z carbon orbital (214 MHz), G is the geometric factor, and ρ^{π} denotes π spin density at the observed carbon.^{3d,10d}

According to NMR eqn (3) with zero-field splitting from EPR $(D = 0.034 \text{ cm}^{-1})$, the slope is calculated to be -1.525×10^{-4} (ppm cm³), which is close to zero and similar to the value obtained from the conventional graph of the proton isotropic shifts of the phenyl substituent as a function of their corresponding geometry factor (*G*, cm⁻³) (Fig. S8, ESI[†]). The dipolar shifts induced by a Ni(m) unpaired electron spin can be deduced as less than 0.0001 ppm for all protons and 0.001 ppm for all ¹³C nuclei in the porphyrinate ring, thus ignoring metal-centered dipolar factors for all NMR data (Table S8, ESI[†]). Similarly, the ligand-centered dipolar shift, which merely exists in carbon atoms possessing π spin density, that is, α -C, β -C and *meso*-C, can also be disregarded by eqn (2) from which there is only *ca*. 1.65 ppm upfield shift for a unit unpaired π spin.

Accordingly, the isotropic shifts for all positions are mainly contributed by Fermi-contact shifts for $Ni(m)(OETPP^{\bullet})(Br)_2$. The negligible dipolar effects also reflect the strong probability of

Table 2 Net spin populations and { π spin densities $\times 10^3$ }, obtained from p_z orbitals which are reassigned to the *z* axes perpendicular to their sp² plane in calculations and [the Fermi contact spin densities $\rho_{\alpha\beta} \times 10^3$] on each symmetry-distinct atom type of Ni(III)(OETPP•)(Br)₂ from unrestricted DFT calculations

<i>S</i> = 1	Ni(III) (OETPP•) ⁺ (LS)	Ni(III) (OETPP•) ⁺ (HS)			
$\frac{S}{\alpha-C}$ $\beta-C$ $meso-C$ $q-C$ $-CH_2$ $-CH_3$	0.1619{96.9} [12.6] 0.0131{7.0} [-1.4] -0.0804{-22.7} [-1.7] 0.0097 [5.8] -0.0013 [-0.6] 0.0017 [2.1]	$\begin{array}{c} 0.0126\{3.1\} \ [1.8]\\ 0.0183\{6.5\} \ [3.2]\\ -0.0742\{-17.5\} \ [-3.6]\\ 0.0062 \ [2.4]\\ -0.0014 \ [-0.2]\\ 0.0015 \ [0.7] \end{array}$			
<i>о</i> -С <i>m</i> -С <i>p</i> -С <i>-</i> С <i>H</i> ₂ <i>-</i> С <i>H</i> ₃ <i>о</i> -Н <i>m</i> -Н <i>p</i> -Н	$\begin{array}{c} -0.0040 \begin{bmatrix} -2.3 \\ 0.0026 \end{bmatrix} \\ 0.0038 \begin{bmatrix} -0.1 \\ 0.0007 \end{bmatrix} \\ 0.0007 \begin{bmatrix} 0.2 \\ 0.0001 \end{bmatrix} \\ 0.0001 \begin{bmatrix} 0.1 \\ 0.0003 \end{bmatrix} \\ 0.0003 \begin{bmatrix} 0.0 \\ 0.0003 \end{bmatrix} \\ 0.0003 \end{bmatrix}$	$\begin{array}{c} -0.0056 \left[-2.7\right] \\ 0.0018 \left[-0.1\right] \\ -0.0055 \left[-0.3\right] \\ 0.0007 \left[0.4\right] \\ 0.0000 \left[0.0\right] \\ 0.0006 \left[0.1\right] \\ -0.0003 \left[-0.1\right] \\ 0.0003 \left[0.1\right] \end{array}$			

the low spin state of Ni(π) ions rather than the high spin state. In some Fe(π) porphyrinate complexes with a low spin state (S = 1/2) similar features were observed.¹¹ Density Functional Theory (DFT) calculations were employed for both LS and HS states to evaluate the critical spin populations, including total spin, localized π spin and Fermi contact spin densities, summarized in Table 2.

In our case, the isotropic shift (δ_{iso}) can be regarded as being mainly contributed by Fermi-contact shift (δ_{con}), which is proportional to the Fermi contact spin densities ($\rho_{\alpha\beta}$) of all ¹H and ¹³C nuclei by eqn (1). It was also noted earlier that the correlation graph of DFT calculated Fermi contact spin density *versus* isotropic shift is able to distinguish the determined ground state from many electronic structures.^{10d,12} For the LS state, the regression line for all atoms shows a very good fit with $R^2 = 0.97$ and slope = 31577 au⁻¹ ppm (Fig. 2). Further estimation of the isotropic shift of β -C that forms the fitted

Fig. 2 Correlation between the calculated Fermi contact spin densities at each symmetry-distinct atom type and the experimental isotropic shifts of the low-spin Ni(III)(OETPP•)(Br)₂ a_{1u} cation radical complex with best fitted slope = 31577 au⁻¹ ppm, R^2 = 0.970.

slope shows that it could be immersed in the signals containing *o*-, *m*-, *p*-carbons. However, as to the HS the corresponding graph has much worse correlation with the fitted slope = 91211 au⁻¹ ppm and R^2 = 0.88 (Fig. S9, ESI†). The *o*- and *meso*-Cs stray away from the regression line with considerable vertical differences, 158 ppm and -88 ppm, respectively, which are regarded as dipolar contributions.^{3d} Also, the α -C is conjectured to appear at 314 ppm (predicted $\delta_{con} + \delta_{dia}$) in the spectrum, localizing very close to q-C. Nevertheless, these outcomes (Table S9, ESI†) are conflicting with previous experimental observations of negligible dipolar shifts, and also violate the observed ¹³C spectrum.

In summary, Ni(m)(OETPP[•])Br₂ is the first example of Ni(m) porphyrin radical cations shown by the X-ray structure, magnetic data, the EPR spectrum and quality paramagnetic NMR spectra. These unusual NMR data have been clearly ascribed to the triplet state containing a LS Ni(m) and an a_{1u} spin-up radical spin. Although the characteristics of *meso*-carbon are exactly the same with very negative spin density for two plausible spin states, a_{1u} with s = +1/2 spin and a_{2u} with s = -1/2 spin, the ground state is well discriminated by qualitative comparisons with other paramagnetic cases and the neat analytical model by combining NMR spectra with DFT calculations. The case of Ni(m)(OETPP[•])Br₂ has become an important prototype for exploring other ferromagnetically coupled complexes from the point of view of this explicative model.

This work was supported by the National Center for High-Performance Computing and the National Science Council of Republic of China, Grant No. NSC102-2113-M-005-005 and NSC88-2113-M005-014.

Notes and references

- (a) A. M. Stolzenberg and M. T. Stershic, J. Am. Chem. Soc., 1988, 110, 6391; (b) U. Ermler, W. Grabarse, S. Shima, M. Goubeaud and R. K. Thauer, Science, 1997, 278, 1457; (c) T. Wondimagegn and A. Ghosh, J. Am. Chem. Soc., 2001, 123, 1543; (d) S. Scheller, M. Goenrich, S. Mayr, R. K. Thauer and B. Jaun, Angew. Chem., Int. Ed., 2010, 49, 8112.
- K. M. Kadish, E. Van Caemelbecke, P. Boulas, F. D'Souza, E. Vogel, M. Kisters, C. J. Medforth and K. M. Smith, *Inorg. Chem.*, 1993, **32**, 4177; (b) M. W. Renner, K. M. Barkigia, D. Melamed, K. M. Smith and J. Fajer, *Inorg. Chem.*, 1996, **35**, 5120; (c) M. W. Renner, K. M. Barkigia, D. Melamed, J.-P. Gisselbrecht, N. Y. Nelson, K. M. Smith and J. Fajer, *Res. Chem. Intermed.*, 2002, **28**, 741.
- 3 (a) T. Sakai, Y. Ohgo, T. Ikeue, M. Takahashi, M. Takeda and M. Nakamura, J. Am. Chem. Soc., 2003, 125, 13028; (b) R.-J. Cheng, Y.-K. Wang, P.-Y. Chen, Y.-P. Han and C.-C. Chang, Chem. Commun., 2005, 1312; (c) Y. Ling and Y. Zhang, J. Am. Chem. Soc., 2009, 131, 6386; (d) C.-C. Chen and P. P. Y. Chen, Angew. Chem., Int. Ed., 2012, 51, 9325.
- 4 (a) J. T. Groves, R. C. Haushalter, M. Nakamura, T. E. Nemo and B. J. Evans, J. Am. Chem. Soc., 1981, 103, 2884; (b) H. Fujii, J. Am. Chem. Soc., 1993, 115, 4641.
- M. W. Renner, K. M. Barkigia, Y. Zhang, C. J. Medforth, K. M. Smith and J. Fajer, *J. Am. Chem. Soc.*, 1994, **116**, 8582; (b) R.-J. Cheng, P.-Y. Chen, P.-R. Gau, C.-C. Chen and S.-M. Peng, *J. Am. Chem. Soc.*, 1997, **119**, 2563; (c) V. Schünemann, M. Gerdan, A. X. Trautwein, N. Haoudi, D. Mandon, J. Fischer, R. Weiss, A. Tabard and R. Guilard, *Angew. Chem., Int. Ed.*, 1999, **38**, 3181; (d) R.-J. Cheng and P.-Y. Chen, *Chem. Chem. J.*, 1999, **5**, 1708.
- 6 (a) A. Wolberg and J. Manassen, J. Am. Chem. Soc., 1970, 92, 2982;
 (b) D. Dolphin, T. Niem, R. H. Felton and I. Fujita, J. Am. Chem. Soc., 1975, 97, 5288.

7 (a) R.-J. Cheng, P.-Y. Chen, T. Lovell, T. Liu, L. Noodleman and D. A. Case, J. Am. Chem. Soc., 2003, 125, 6774; (b) M. Nakamura, Coord. Chem. Rev., 2006, 250, 2271; (c) M. Nakamura, in Coordination Chemistry Research Progress, ed. T. W. Cartere and K. S. Verley, Nova Science, 2008, p. 13; (d) A. Ikezaki, Y. Ohgo and M. Nakamura, Coord. Chem. Rev., 2009, 253, 2056; (e) M. Nakamura, A. Ikezaki and M. Takahashi, J. Chin. Chem. Soc., 2013, 60, 9.

Communication

- 8 S. Kouno, A. Ikezaki, T. Ikeue and M. Nakamura, J. Inorg. Biochem., 2011, 105, 718.
- 9 M. Nakamura, Y. Ohgo and A. Ikezaki, in *Handbook of Porphyrin Science: Physicochemical characterization*, ed. K. M. Kadish, K. M. Smith and R. Guilard, World Scientific, Singapore, 2010, vol. 7.
- (a) R. J. Kurland and B. R. McGarvey, J. Magn. Reson., 1970, 2, 286;
 (b) J. Mispelter, M. Momenteau and J.-M. Lhoste, J. Chem. Soc., Dalton Trans., 1981, 1729;
 (c) H. M. Goff, J. Am. Chem. Soc., 1981, 103, 3714;
 (d) J. Mispelter, M. Momenteau and J.-M. Lhoste, in Biological Magnetic Resonance, ed. L. J. Berliner and J. Reuben, Plenum, New York, 1993, vol. 12;
 (e) I. Bertini, C. Luchinat and G. Parigi, Solution NMR of Paramagnetic Molecules, Elsevier, Amsterdam, 2001.
- 11 (a) G. N. La Mar, T. J. Bold and J. D. Satterlee, *Biochim. Biophys. Acta*, 1977, **498**, 189; (b) G. Simonneaux, F. Hindre and M. Le Plouzennec, *Inorg. Chem.*, 1989, **28**, 823.
- 12 Y. Yamamoto, N. Nanai and R. Chujo, J. Chem. Soc., Chem. Commun., 1990, 1556.