512 research outputs found

    Interethnic differences in neuroimaging markers and cognition in Asians, a population-based study

    Get PDF
    We examined interethnic differences in the prevalence of neuroimaging markers of cerebrovascular and neurodegenerative disease in 3 major Asian ethnicities (Chinese, Malays, and Indians), as well as their role in cognitive impairment. 3T MRI brain scans were acquired from 792 subjects (mean age: 70.0 ± 6.5years, 52.1% women) in the multi-ethnic Epidemiology of Dementia In Singapore study. Markers of cerebrovascular disease and neurodegeneration were identified. Cognitive performance was evaluated using Mini Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and a neuropsychological assessment. Compared to Chinese, Malays had a higher burden of intracranial stenosis (OR: 2.28. 95%CI: 1.23-4.20) and cortical atrophy (β: -0.60. 95%CI: -0.78, -0.41), while Indians had a higher burden of subcortical atrophy (β: -0.23. 95%CI: -0.40, -0.06). Moreover, Malay and Indian ethnicities were likely to be cognitively impaired (OR for Malays: 3.79. 95%CI: 2.29-6.26; OR for Indians: 2.87. 95%CI: 1.74-4.74) and showed worse performance in global cognition (β for Malays: -0.51. 95%CI: -0.66, -0.37; and Indians: -0.32. 95%CI: -0.47, -0.17). A higher burden of cerebrovascular and neurodegenerative markers were found in Malays and Indians when compared to Chinese. Further research is required to fully elucidate the factors and pathways that contribute to these observed differences

    The Impact of Strategic White Matter Hyperintensity Lesion Location on Language

    Get PDF
    Objective: The impact of white matter hyperintensities (WMH) on language possibly depends on lesion location through disturbance of strategic white matter tracts. We examined the impact of WMH location on language in elderly Asians. Design: Cross-sectional. Setting: Population-based. Participants: Eight-hundred nineteen residents of Singapore, ages (≥65 years). Measurements: Clinical, cognitive and 3T magnetic resonance imaging assessments were performed on all participants. Language was assessed using the Modified Boston Naming Test (MBNT) and Verbal Fluency (VF). Hypothesis-free region-of-interest-based (ROI) analyses based on major white matter tracts were used to determine the association between WMH location and language. Conditional dependencies between the regional WMH volumes and language were examined using Bayesian-network analysis. Results: ROI-based analyses showed that WMH located within the anterior thalamic radiation (mean difference: −0.12, 95% confidence interval [CI]: −0.22; −0.02, p = 0.019) and uncinate fasciculus (mean difference: −0.09, 95% CI: −0.18; −0.01, p = 0.022) in the left hemisphere were significantly associated with worse VF but did not survive multiple testing. Conversely, WMH volume in the left cingulum of cingulate gyrus was significantly associated with MBNT performance (mean difference: −0.09, 95% CI: −0.17; −0.02, p = 0.016). Bayesian-network analyses confirmed the left cingulum of cingulate gyrus as a direct determinant of MBNT performance. Conclusion: Our findings identify the left cingulum of cingulate gyrus as a strategic white matter tract for MBNT, suggesting that language – is sensitive to subcortical ischemic damage. Future studies on the role of sporadic ischemic lesions and vascular cognitive impairment should not only focus on total WMH volume but should also take WMH lesion location into account when addressing language

    TCMGeneDIT: a database for associated traditional Chinese medicine, gene and disease information using text mining

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traditional Chinese Medicine (TCM), a complementary and alternative medical system in Western countries, has been used to treat various diseases over thousands of years in East Asian countries. In recent years, many herbal medicines were found to exhibit a variety of effects through regulating a wide range of gene expressions or protein activities. As available TCM data continue to accumulate rapidly, an urgent need for exploring these resources systematically is imperative, so as to effectively utilize the large volume of literature.</p> <p>Methods</p> <p>TCM, gene, disease, biological pathway and protein-protein interaction information were collected from public databases. For association discovery, the TCM names, gene names, disease names, TCM ingredients and effects were used to annotate the literature corpus obtained from PubMed. The concept to mine entity associations was based on hypothesis testing and collocation analysis. The annotated corpus was processed with natural language processing tools and rule-based approaches were applied to the sentences for extracting the relations between TCM effecters and effects.</p> <p>Results</p> <p>We developed a database, TCMGeneDIT, to provide association information about TCMs, genes, diseases, TCM effects and TCM ingredients mined from vast amount of biomedical literature. Integrated protein-protein interaction and biological pathways information are also available for exploring the regulations of genes associated with TCM curative effects. In addition, the transitive relationships among genes, TCMs and diseases could be inferred through the shared intermediates. Furthermore, TCMGeneDIT is useful in understanding the possible therapeutic mechanisms of TCMs via gene regulations and deducing synergistic or antagonistic contributions of the prescription components to the overall therapeutic effects. The database is now available at <url>http://tcm.lifescience.ntu.edu.tw/</url>.</p> <p>Conclusion</p> <p>TCMGeneDIT is a unique database that offers diverse association information on TCMs. This database integrates TCMs with biomedical studies that would facilitate clinical research and elucidate the possible therapeutic mechanisms of TCMs and gene regulations.</p

    Posterior eye shape measurement with retinal OCT compared to MRI

    Get PDF
    PURPOSE. Posterior eye shape assessment by magnetic resonance imaging (MRI) is used to study myopia. We tested the hypothesis that optical coherence tomography (OCT), as an alternative, could measure posterior eye shape similarly to MRI. METHODS. Macular spectral-domain OCT and brain MRI images previously acquired as part of the Singapore Epidemiology of Eye Diseases study were analyzed. The right eye in the MRI and OCT images was automatically segmented. Optical coherence tomography segmentations were corrected for optical and display distortions requiring biometry data. The segmentations were fitted to spheres and ellipsoids to obtain the posterior eye radius of curvature (Rc) and asphericity (Qxz). The differences in Rc and Qxz measured by MRI and OCT were tested using paired t-tests. Categorical assignments of prolateness or oblateness using Qxz were compared. RESULTS. Fifty-two subjects (67.8 ± 5.6 years old) with spherical equivalent refraction from +0.50 to -5.38 were included. The mean paired difference between MRI and original OCT posterior eye Rc was 24.03 ± 46.49 mm (P = 0.0005). For corrected OCT images, the difference in Rc decreased to -0.23 ± 2.47 mm (P = 0.51). The difference between MRI and OCT asphericity, Qxz, was -0.052 ± 0.343 (P = 0.28). However, categorical agreement was only moderate (j = 0.50). CONCLUSIONS. Distortion-corrected OCT measurements of Rc and Qxz were not statistically significantly different from MRI, although the moderate categorical agreement suggests that individual differences remained. This study provides evidence that with distortion correction, noninvasive office-based OCT could potentially be used instead of MRI for the study of posterior eye shape

    Mitochondrial Apoptosis and FAK Signaling Disruption by a Novel Histone Deacetylase Inhibitor, HTPB, in Antitumor and Antimetastatic Mouse Models

    Get PDF
    BACKGROUND: Compound targeting histone deacetylase (HDAC) represents a new era in molecular cancer therapeutics. However, effective HDAC inhibitors for the treatment of solid tumors remain to be developed. METHODOLOGY/PRINCIPAL FINDINGS: Here, we propose a novel HDAC inhibitor, N-Hydroxy-4-(4-phenylbutyryl-amino) benzamide (HTPB), as a potential chemotherapeutic drug for solid tumors. The HDAC inhibition of HTPB was confirmed using HDAC activity assay. The antiproliferative and anti-migratory mechanisms of HTPB were investigated by cell proliferation, flow cytometry, DNA ladder, caspase activity, Rho activity, F-actin polymerization, and gelatin-zymography for matrix metalloproteinases (MMPs). Mice with tumor xenograft and experimental metastasis model were used to evaluate effects on tumor growth and metastasis. Our results indicated that HTPB was a pan-HDAC inhibitor in suppressing cell viability specifically of lung cancer cells but not of the normal lung cells. Upon HTPB treatment, cell cycle arrest was induced and subsequently led to mitochondria-mediated apoptosis. HTPB disrupted F-actin dynamics via downregulating RhoA activity. Moreover, HTPB inhibited activity of MMP2 and MMP9, reduced integrin-β1/focal adhesion complex formation and decreased pericellular poly-fibronectin assemblies. Finally, intraperitoneal injection or oral administration of HTPB efficiently inhibited A549 xenograft tumor growth in vivo without side effects. HTPB delayed lung metastasis of 4T1 mouse breast cancer cells. Acetylation of histone and non-histone proteins, induction of apoptotic-related proteins and de-phosphorylation of focal adhesion kinase were confirmed in treated mice. CONCLUSIONS/SIGNIFICANCE: These results suggested that intrinsic apoptotic pathway may involve in anti-tumor growth effects of HTPB in lung cancer cells. HTPB significantly suppresses tumor metastasis partly through inhibition of integrin-β1/FAK/MMP/RhoA/F-actin pathways. We have provided convincing preclinical evidence that HTPB is a potent HDAC targeted inhibitor and is thus a promising candidate for lung cancer chemotherapy

    Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates

    Full text link
    The two-dimensional layer of molybdenum disulfide (MoS2) has recently attracted much interest due to its direct-gap property and potential applications in optoelectronics and energy harvesting. However, the synthetic approach to obtain high quality and large-area MoS2 atomic thin layers is still rare. Here we report that the high temperature annealing of a thermally decomposed ammonium thiomolybdate layer in the presence of sulfur can produce large-area MoS2 thin layers with superior electrical performance on insulating substrates. Spectroscopic and microscopic results reveal that the synthesized MoS2 sheets are highly crystalline. The electron mobility of the bottom-gate transistor devices made of the synthesized MoS2 layer is comparable with those of the micromechanically exfoliated thin sheets from MoS2 crystals. This synthetic approach is simple, scalable and applicable to other transition metal dichalcogenides. Meanwhile, the obtained MoS2 films are transferable to arbitrary substrates, providing great opportunities to make layered composites by stacking various atomically thin layers.Comment: manuscript submitted on 11-Dec-2011, revision submitted on 16-Feb-201

    Sumoylation of Hypoxia-Inducible Factor-1α Ameliorates Failure of Brain Stem Cardiovascular Regulation in Experimental Brain Death

    Get PDF
    One aspect of brain death is cardiovascular deregulation because asystole invariably occurs shortly after its diagnosis. A suitable neural substrate for mechanistic delineation of this aspect of brain death resides in the rostral ventrolateral medulla (RVLM). RVLM is the origin of a life-and-death signal that our laboratory detected from blood pressure of comatose patients that disappears before brain death ensues. At the same time, transcriptional upregulation of heme oxygenase-1 in RVLM by hypoxia-inducible factor-1α (HIF-1α) plays a pro-life role in experimental brain death, and HIF-1α is subject to sumoylation activated by transient cerebral ischemia. It follows that sumoylation of HIF-1α in RVLM in response to hypoxia may play a modulatory role on brain stem cardiovascular regulation during experimental brain death.A clinically relevant animal model that employed mevinphos as the experimental insult in Sprague-Dawley rat was used. Biochemical changes in RVLM during distinct phenotypes in systemic arterial pressure spectrum that reflect maintained or defunct brain stem cardiovascular regulation were studied. Western blot analysis, EMSA, ELISA, confocal microscopy and immunoprecipitation demonstrated that drastic tissue hypoxia, elevated levels of proteins conjugated by small ubiquitin-related modifier-1 (SUMO-1), Ubc9 (the only known conjugating enzyme for the sumoylation pathway) or HIF-1α, augmented sumoylation of HIF-1α, nucleus-bound translocation and enhanced transcriptional activity of HIF-1α in RVLM neurons took place preferentially during the pro-life phase of experimental brain death. Furthermore, loss-of-function manipulations by immunoneutralization of SUMO-1, Ubc9 or HIF-1α in RVLM blunted the upregulated nitric oxide synthase I/protein kinase G signaling cascade, which sustains the brain stem cardiovascular regulatory machinery during the pro-life phase.We conclude that sumoylation of HIF-1α in RVLM ameliorates brain stem cardiovascular regulatory failure during experimental brain death via upregulation of nitric oxide synthase I/protein kinase G signaling. This information should offer new therapeutic initiatives against this fatal eventuality

    No additional prognostic value of genetic information in the prediction of vascular events after cerebral ischemia of arterial origin

    Get PDF
    Background: Patients who have suffered from cerebral ischemia have a high risk of recurrent vascular events. Predictive models based on classical risk factors typically have limited prognostic value. Given that cerebral ischemia has a heritable component, genetic information might improve performance of these risk models. Our aim was to develop and compare two models: one containing traditional vascular risk factors, the other also including genetic information. Methods and Results: We studied 1020 patients with cerebral ischemia and genotyped them with the Illumina Immunochip. Median follow-up time was 6.5 years; the annual incidence of new ischemic events (primary outcome, n=198) was 3.0%. The prognostic model based on classical vascular risk factors had an area under the receiver operating characteristics curve (AUC-ROC) of 0.65 (95% confidence interval 0.61-0.69). When we added a genetic risk score based on prioritized SNPs from a genome-wide association study of ischemic stroke (using summary statistics from the METASTROKE study which included 12389 cases and 62004 controls), the AUC-ROC remained the same. Similar results were found for the secondary outcome ischemic stroke. Conclusions: We found no additional value of genetic information in a prognostic model for the risk of ischemic events in patients with cerebral ischemia of arterial origin. This is consistent with a complex, polygenic architecture, where many genes of weak effect likely act in concert to influence the heritable risk of an individual to develop (recurrent) vascular events. At present, genetic information cannot help clinicians to distinguish patients at high risk for recurrent vascular events
    corecore