28 research outputs found

    Research on the Status Quo and Satisfaction of ' Internet + ' Home Care Model in Hangzhou in the Post-Epidemic Era

    Get PDF
    This paper takes Hangzhou as an example to study the current situation of the "Internet +" home care model in Hangzhou in the post-epidemic era and the satisfaction of citizens with this new pension model. We established a structural equation model of citizens' satisfaction with the "Internet +" home care model, and calculated the satisfaction index by combining the CSI satisfaction index

    DragNUWA: Fine-grained Control in Video Generation by Integrating Text, Image, and Trajectory

    Full text link
    Controllable video generation has gained significant attention in recent years. However, two main limitations persist: Firstly, most existing works focus on either text, image, or trajectory-based control, leading to an inability to achieve fine-grained control in videos. Secondly, trajectory control research is still in its early stages, with most experiments being conducted on simple datasets like Human3.6M. This constraint limits the models' capability to process open-domain images and effectively handle complex curved trajectories. In this paper, we propose DragNUWA, an open-domain diffusion-based video generation model. To tackle the issue of insufficient control granularity in existing works, we simultaneously introduce text, image, and trajectory information to provide fine-grained control over video content from semantic, spatial, and temporal perspectives. To resolve the problem of limited open-domain trajectory control in current research, We propose trajectory modeling with three aspects: a Trajectory Sampler (TS) to enable open-domain control of arbitrary trajectories, a Multiscale Fusion (MF) to control trajectories in different granularities, and an Adaptive Training (AT) strategy to generate consistent videos following trajectories. Our experiments validate the effectiveness of DragNUWA, demonstrating its superior performance in fine-grained control in video generation. The homepage link is \url{https://www.microsoft.com/en-us/research/project/dragnuwa/

    Spin and charge density waves in the quasi-one-dimensional KMn6Bi5

    Full text link
    AMn6Bi5 materials (A = Na, K, Rb and Cs) consisting of unique Mn-cluster chains emerge as a new family of superconductors with the suppression of their antiferromagnetic (AFM) order under high pressures. Here, we report transverse incommensurate spin density waves (SDWs) for the Mn atoms with a propagating direction along the chain axes as a ground state for KMn6Bi5 by single crystal neutron diffraction. The SDWs have a refined amplitude of ~2.46 Bohr magnetons for the Mn atoms in the pentagons and ~0.29 Bohr magnetons with a large standard deviation for Mn atoms in the center between the pentagons. AFM dominate both the nearest-neighbor Mn-Mn interactions within the pentagon and next-nearest-neighbor Mn-Mn interactions out of the pentagon (along the propagating wave). The SDWs exhibit both local and itinerant characteristics probably formed by a cooperative interaction between local magnetic exchange and conduction electrons. A significant magnetoelastic effect during the AFM transition, especially along the chain direction, has been demonstrated by temperature-dependent x-ray powder diffraction. Single crystal x-ray diffraction below the AFM transition revealed satellite peaks originating from charge density waves along the chain direction with a q-vector twice as large as the SDW one, pointing to a strong real space coupling between them. Our work not only manifests a fascinating interplay among spin, charge, lattice and one dimensionality to trigger intertwined orders in KMn6Bi5 but also provides important piece of information for the magnetic structure of the parent compound to understand the mechanism of superconductivity in this new family

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Application of Spatiotemporal Hybrid Model of Deformation in Safety Monitoring of High Arch Dams: A Case Study

    No full text
    As an important feature, deformation analysis is of great significance to ensure the safety and stability of arch dam operation. In this paper, Jinping-I arch dam with a height of 305 m, which is the highest dam in the world, is taken as the research object. The deformation data representation method is analyzed, and the processing method of deformation spatiotemporal data is discussed. A deformation hybrid model is established, in which the hydraulic component is calculated by the finite element method, and other components are still calculated by the statistical model method. Since the relationship among the measuring points is not taken into account and the overall situation cannot be fully reflected in the hybrid model, a spatiotemporal hybrid model is proposed. The measured values and coordinates of all the typical points with pendulums of the arch dam are included in one spatiotemporal hybrid model, which is feasible, convenient, and accurate. The model can predict the deformation of any position on the arch dam. This is of great significance for real-time monitoring of deformation and stability of Jinping-I arch dam and ensuring its operation safety

    A Fraud Resilient Medical Insurance Claim System

    No full text
    As many countries in the world start to experience population aging, there are an increasing number of people relying on medical insurance to access healthcare resources. Medical insurance frauds are causing billions of dollars in losses for public healthcare funds. The detection of medical insurance frauds is an important and difficult challenge for the artificial intelligence (AI) research community. This paper outlines HFDA, a hybrid AI approach to effectively and efficiently identify fraudulent medical insurance claims which has been tested in an online medical insurance claim system in China
    corecore