84 research outputs found

    Chronic HCV Infection Affects the NK Cell Phenotype in the Blood More than in the Liver

    Get PDF
    Although epidemiological and functional studies have implicated NK cells in protection and early clearance of HCV, the mechanism by which they may contribute to viral control is poorly understood, particularly at the site of infection, the liver. We hypothesized that a unique immunophenotypic/functional NK cell signature exists in the liver that may provide insights into the contribution of NK cells to viral control. Intrahepatic and blood NK cells were profiled from chronically infected HCV-positive and HCV-negative individuals. Baseline expression of activating and inhibitory receptors was assessed, as well as functional responses following stimulation through classic NK cell pathways. Independent of HCV infection, the liver was enriched for the immunoregulatory CD56bright NK cell population, which produced less IFNγ and CD107a but comparable levels of MIP1β, and was immunophenotypically distinct from their blood counterparts. This profile was mostly unaltered in chronic HCV infection, though different expression levels of NKp46 and NKG2D were associated with different grades of fibrosis. In contrast to the liver, chronic HCV infection associated with an enrichment of CD161lowperforinhigh NK cells in the blood correlated with increased AST and 2B4 expression. However, the association of relatively discrete changes in the NK cell phenotype in the liver with the fibrosis stage nevertheless suggests an important role for the NK response. Overall these data suggest that tissue localization has a more pervasive effect on NK cells than the presence of chronic viral infection, during which these cells might be mostly attuned to limiting immunopathology. It will be important to characterize NK cells during early HCV infection, when they should have a critical role in limiting infection

    Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota)

    Get PDF
    Compared to the higher fungi (Dikarya), taxonomic and evolutionary studies on the basal clades of fungi are fewer in number. Thus, the generic boundaries and higher ranks in the basal clades of fungi are poorly known. Recent DNA based taxonomic studies have provided reliable and accurate information. It is therefore necessary to compile all available information since basal clades genera lack updated checklists or outlines. Recently, Tedersoo et al. (MycoKeys 13:1--20, 2016) accepted Aphelidiomycota and Rozellomycota in Fungal clade. Thus, we regard both these phyla as members in Kingdom Fungi. We accept 16 phyla in basal clades viz. Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. Thus, 611 genera in 153 families, 43 orders and 18 classes are provided with details of classification, synonyms, life modes, distribution, recent literature and genomic data. Moreover, Catenariaceae Couch is proposed to be conserved, Cladochytriales Mozl.-Standr. is emended and the family Nephridiophagaceae is introduced

    Automated Design of Embodied Machines: Optimization Algorithms for Soft Robot Morphologies and Behaviors

    Full text link
    The current state of robotics relies largely on hand designed morphologies and controllers. This paradigm of robotics is well suited for controlled and static environments like warehouses or factory floors, but this type of robot often fails to extrapolate to autonomous behaviors in unpredictable and dynamic environments. In contrast, biological animals have evolved to seamlessly interact with the uncertainty of the real world. They accomplish this feat, in part, through specialized and complex morphologies that employ compliant materials. In this work, I explore the interactions of autonomous embodied agents’ brains and bodies with each other, and with the outside environment, through the evolution of soft robot morphologies and controllers. These interactions are first explored by evolving robots that perform complex and effective behaviors without high-level controllers in order to demonstrate the potential of morphological computation in compliant bodies. The study of morphological computation is further explored by also demonstrating effective behavior in tasks which are unapproachable with traditional rigid body robots (like squeezing and folding oneself). The focus on morphologically-driven behaviors is extended by evolving soft robots with neural-esque spiking muscles and demonstrating the optimization of physically embodied information pathways, exemplify the continuum between morphologies and controllers in embodied systems. I then turn to the simultaneous optimization of complex morphologies and high-level controllers, using the theory of embodied cognition to hypothesize that the specialization of morphologies and controllers to one another has been hindering the evolution of complex embodied machines. Results here demonstrate that a proposed algorithm for “morphological innovation protection”, which temporarily reduces selection pressure on newly mutated morphologies to enable readaptation of the coupled brain-body systems, produces significantly more fit robots and allows for their sustained optimization over evolutionary time. Generalizing the above methods, the design automation techniques employed here also are applied to problems outside of soft robots – demonstrating the optimization of object topologies towards a desired mechanical resonance. I hope that the work described in this dissertation will help to inform the automated design of embodied machines, like robots, for engineering applications, while also contributing to the fundamental and general understanding of embodied intelligent agents, and their evolution in natural systems

    Population differentiation in the seaweed Chondrus crispus: preliminary results

    No full text

    McAllister and his double /

    No full text
    Mode of access: Internet

    GASTRIC FUNCTION IN CASES OF GASTRIC AND DUODENAL ULCER

    No full text

    ECOLOGY AND DEVELOPMENTAL MORPHOLOGY OF MALE PLANTS OF CHONDRUS CRISPUS (GIGARTINALES, RHODOPHYTA)1

    No full text
    The ecology and developmental morphology of the male plants of Chondrus crispus Stackhouse from New England and the Canadian Maritime Provinces are described. The period of maturation and release of spermatia varies spatially; however, the peak discharge generally occurs over a broad period during the summer or fall. Male plants may exhibit comparable abundances to female plants, particularly during periods of maximum spermatial discharge. At maturity, the spermatangial sorus appears as a pink band on dark red terminal branchlets; following spermatial discharge, the sorus becomes white in color. The developmental morphology of spermatia is described from electron microscopic observations
    corecore