165 research outputs found

    Selecting suitable image dimensions for scanning probe microscopy

    Get PDF
    The use of scanning probe microscopy to acquire topographical information from surfaces with nanoscale features is now a common occurrence in scientific and engineering research. Image sizes can be orders of magnitude greater than the height of the features being analysed, and there is often a trade-off between image quality and acquisition time. This work investigates a commonly encountered problem in nanometrology - how to choose a scan size which is representative of the entire sample. The topographies of a variety of samples are investigated, including metals, polymers, and thin films

    Active Thermal Sensor for Improved Distributed Temperature Sensing in Haptic Arrays

    Get PDF
    The efficacy of integrating temperature sensors into compliant pressure sensing technologies, such as haptic sensing arrays, is limited by thermal losses into the substrate. A solution is proposed here whereby an active heat sink is incorporated into the sensor to mitigate these losses, while still permitting the use of common VLSI manufacturing methods and materials to be used in sensor fabrication. This active sink is capable of responding to unknown fluctuations in external temperature, that is, the temperature that is to be measured, and directly compensates in real time for the thermal power loss into the substrate by supplying an equivalent amount of power back into the thermal sensor. In this paper, the thermoelectric effects of the active heat sink/thermal sensor system are described and used to reduce the complexity of the system to a simple one-dimensional numerical model. This model is incorporated into a feedback system used to control the active heat sink and monitor the sensor output. A fabrication strategy is also described to show how such a technology can be incorporated into a common bonded silicon-on-insulator- (BSOI-) based capacitive pressure sensor array such as that used in some haptic sensing systems

    A dynamic model of the jump-to phenomenon during AFM analysis

    Get PDF
    The measurement of the physical properties of surfaces on the nanoscale is a long-standing problem, and the atomic force microscope (AFM) has enabled the investigation of surface energies and mechanical properties over a range of length scales. The ability to measure these properties for softer materials presents a challenge when interpreting data obtained from such measurements, in particular because of the dynamics of the compliant AFM microcantilever. This work attempts to better understand the interaction between an AFM tip and samples of varying elastic modulus, in the presence of attractive van der Waals forces. A theoretical model is presented in which the dynamics of the approach of an atomic force microscope cantilever tip toward a surface, prior to and during the van der Waals-induced jump-to phenomenon, are included. The cantilever mechanics incorporates the motion of the air through which the cantilever moves, the acceleration, inertia, and torque of the cantilever, and the squeezing of the fluid between the cantilever tip and the surface, leading to elastohydrodynamic lubrication and deformation of the substrate. Simulations of the cantilever approach are compared to measurements performed using an atomic force microscope, and the effect of cantilever drive velocity is investigated. Cantilevers presenting (1) spherical colloid probe tips and (2) pyramidal tips are employed, and substrates exhibiting Young’s moduli of 3 MPa, 500 MPa, and 75 GPa are measured. The analysis presented could be extended to enhance understanding of dynamic phenomena in micro/nanoelectromechanical systems such as resonators and microrheometers, particularly those which contain soft materials and also where surface interactions are important

    Anisotropic dehydration of hydrogel surfaces

    Get PDF
    Efforts to develop tissue-engineered skin for regenerative medicine have explored natural, synthetic, and hybrid hydrogels. The creation of a bilayer material, with the stratification exhibited by native skin is a complex problem. The mechanically robust, waterproof epidermis presents the stratum corneum at the tissue/air interface, which confers many of these protective properties. In this work we explore the effect of high temperatures on alginate hydrogels, which are widely employed for tissue engineering due to their excellent mechanical properties and cellular compatibility. In particular, we investigate the rapid dehydration of the hydrogel surface which occurs following local exposure to heated surfaces with temperatures in the range 100-200 oC. We report the creation of a mechanically strengthened hydrogel surface, with improved puncture resistance and increased coefficient of friction, compared to the unheated surface. The use of a mechanical restraint during heating promoted differences in the rate of mass loss; the rate of temperature increase within the hydrogel, in the presence and absence of restraint, is simulated and discussed. It is hoped that the results will be of use in the development of processes suitable for preparing skin-like analogues; application areas could include wound healing and skin restoration

    Development of an optimized converter layer for silicon carbide based neutron sensor for the detection of fissionable materials

    Get PDF
    Here, we describe the early stage design, construction and testing of a miniature silicon carbide diode neutron sensing instrument. It is intended that a more mature version of this instrument will be used as part of a robotic manipulator to investigate various parts of the stricken Fukushima nuclear power plant. Here, three such silicon carbide based proto-type sensors have been created, two of which have differing thicknesses of boron-10 deposited on, with the final one left bare. The thicknesses and materials chosen have been informed via Monte Carlo software (MCNP 6.2) which was also used to assess the suitability of two other potential converter materials – Lithium-6 and gadolinium-157. The work goes on to describe the design, construction and testing of the prototype device at two sites around the UK. The project is part of a UK/Japanese collaboration between Lancaster University and Kyoto University and is supported by an EPSRC grant via the UK Japan Civil nuclear research program

    The design and testing of a novel compact real-time hybrid Compton and neutron scattering instrument.

    Get PDF
    The requirement for multiple-purpose imaging system occurs regularly within the field of radioactive materials safeguard and security applications. Current instrumentation utilised within the field of dual gamma-ray and neutron imaging systems suffer with limited portability, long scan times, and cover limited energy ranges. Conversely, the imaging system designed, built and tested in this work is not only capable of locating both gamma rays and neutrons, but is also capable of operating in near real time, covers a large energy range and is portable to a desktop degree. The imaging concept applied simultaneously combines Compton and neutron scattering techniques within a threelayer design comprising of a unique combination of scintillators backed with pixelated arrays of photodetectors in the form of 8 x 8 Silicon Photomultipliers (SiPMs). The system features the organic scintillator EJ-204, neutron sensitive lithium glass and thallium doped caesium iodide utilised along with associated SiPMs and front-end electronics, all enclosed within a volume of 120 mm x 120 mm x 200 mm. Further backend electronics is situated within a separate unit where each of the data channels are simultaneously interrogated in order to determine the location of the incident gamma rays and neutrons. The validity of the instrument has been computationally verified using MCNP6 and Geant4 Monte Carlo simulation codes and experimentally tested using Cs-137 gamma sources of ~300 kBq and a Cf-252 neutron source featuring an emission rate of 106 neutrons per second. The developed instrument offers a real-time response with a scan time of 60 seconds and a further data analysis time of 60 seconds. The intrinsic efficiency of the instrument has been experimentally measured to be in the order of 10-4 for both gamma rays at 0.667 MeV and fast neutrons at average energy of 2.1 MeV, and 0.78 for thermal neutron
    • …
    corecore