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Abstract 

The measurement of the physical properties of surfaces on the nanoscale is a long-standing problem, and the 

atomic force microscope (AFM) has enabled the investigation of surface energies and mechanical properties over 

a range of length scales. The ability to measure these properties for softer materials presents a challenge when 

interpreting data obtained from such measurements, in particular because of the dynamics of the compliant AFM 

microcantilever. This work attempts to better understand the interaction between an AFM tip and samples of 

varying elastic modulus, in the presence of attractive van der Waals forces. A theoretical model is presented in 

which the dynamics of the approach of an atomic force microscope cantilever tip towards a surface, prior to and 

during the van der Waals-induced jump-to phenomenon, are included. The cantilever mechanics incorporates the 

motion of the air through which the cantilever moves, the acceleration, inertia and torque of the cantilever, and 

the squeezing of the fluid between the cantilever tip and the surface, leading to elastohydrodynamic lubrication 

and deformation of the substrate. Simulations of the cantilever approach are compared to measurements 

performed using an atomic force microscope, and the effect of cantilever drive velocity is investigated. 

Cantilevers presenting (i) spherical colloid probe tips and (ii) pyramidal tips are employed, and substrates 

exhibiting Young's moduli of 3 MPa, 500 MPa, and 75 GPa are measured. The analysis presented could be 

extended to enhance understanding of dynamic phenomena in micro/nanoelectromechanical systems such as 

resonators and microrheometers, particularly those which contain soft materials and also where surface 

interactions are important. 
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1. Introduction 

The atomic force microscope (AFM)[1] has revolutionised the way in which researchers can directly probe the 

interaction forces between two surfaces. Instrument configurations afford the possibility of investigating 

nanoscale interaction between two materials of interest, under gaseous environments, aqueous and organic 

liquids, or vacuum conditions. The materials are brought towards one another using a piezoelectric translation 

stage, and the interaction force between the surfaces is measured by monitoring the deflection of a 

microfabricated cantilever, to which one of the two materials is attached, often in the form of a colloid probe.[2] 

Usually it is the adhesive interaction force required to separate the two surfaces which is of interest to 

researchers, and this is generally termed the "pull-off" force. There is often significant insight to be gained from 

interpreting the interaction behaviour upon the approach of the two surfaces, a process which often ends with a 

"jump-to" or "snap-in" event, which occurs when the gradient of any attractive forces between the surfaces 

exceeds the compliance of the AFM cantilever. The attractive forces typically consist of van der Waal, whilst 

electrostatic interactions can be either repulsive or attractive, depending upon the surface charges of the two 

bodies being brought together. There have been numerous publications which addressed the jump-to 

phenomenon, either in full or in part. Some of the earliest research which considered AFM jump-to events was 

performed by Butt,[3] who studied forces experienced by the AFM tip in electrolyte solutions. This was followed 

by a detailed study by Weisenhorn et al.[4] which considered the nature of the "jump-to" and "pull-off" events for 

a range of surfaces and liquid media.  

A number of studies have considered the approach of an AFM cantilever, modified with a colloid probe tip, 

towards a deformable interface such as an air bubble[5-6] or oil droplet.[7] In both situations the surface was found 

to deform upon the cantilever approach, during which time a repulsive force was applied to the cantilever, due to 

squeezing of the fluid film present between the colloid probe and the deformable surface. The approach usually 

ended in the colloid probe being engulfed by the bubble or droplet, unless either dissolved salt, surfactant or 

polymer was used to prevent this from occurring. Gady et al.[8] studied the jump-to phenomenon for polystyrene 

microparticles against highly-oriented pyrolytic graphite, arriving at expressions which were useful for estimating 

the jump-to distance when electrostatic forces were important and also when they were not. Cappella and 

Dietler[9] showed that the jump-to distance is inversely proportional to the cantilever spring constant, modelling 

the tip-sample interaction using a Lennard-Jones potential. Attard et al.[10] considered the approach of a 

cantilever oscillating at its first resonant frequency towards a surface, identifying those regimes in which inertia is 

significant. Attard and Gillies[11] also considered the approach of a colloid probe towards a deformable 

viscoelastic droplet, fitting a theoretical model to experimental data in order to estimate the moduli and 

relaxation time of the material. Butt and Stark[12] examined the jump-to phenomenon for thin liquid layers, 

attempting to estimate liquid thin film thickness from the acquired jump-to data. Das et al.[13] explored the jump-

to phenomenon as a means to estimate the Hamaker constant, utilising a model which incorporated a simple 

expression for the dynamic motion of the cantilever. There has also been a substantial review by Attard[14] which 

summarises many of these results. 

A number of works which considered the attractive forces between two deformable spheres have been 

published. For example Parker and Attard[15-16] considered theoretically the quasi-static deformation of spherical 

elastic surfaces due to both attractive and repulsive surface forces, including van der Waals interactions, 

electrical double layer interactions, and solvation forces, comparing the results to Hertz,[17] Derjaguin-Muller-

Toporov,[18] and Johnson-Kendall-Roberts[19] theories of contact. Attard[20] then considered theoretically the 

deformation of viscoelastic particles, reporting that hysteresis between the loading and unloading curves 

increased with increasing driving velocity. 

In this work we investigate the effect that dynamic forces and substrate compliance have on the jump-to distance 

for measurements between surfaces in air. The fixed end of the cantilever is driven towards the substrate at a 
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constant velocity, and the cantilever is not oscillating in the vertical direction at its resonant frequency. We 

consider a sphere-on-flat configuration, in which either (i) a spherical colloid probe or (ii) pyramidal tip is 

attached or fabricated near to the end of the approaching cantilever beam. The tip is assumed to be made of 

SiO2, as this is a common material used for spherical colloid probes, and pyramidal tipped cantilevers are usually 

manufactured from Si, which presents a SiO2 outer surface. The cantilever mechanics are thoroughly examined, 

taking into account the motion of the air through which the cantilever moves, the acceleration, inertia and 

torque of the cantilever, and the squeezing of the air between the sphere and the flat surface. Contact mode 

AFM measurements of the jump-to distance are performed over four orders of magnitude of cantilever drive 

velocity, employing (i) a spherical colloid probe tip and (ii) a pyramidal tip, versus (a) a glass substrate, (b) a 

poly(propylene) substrate and (c) a poly(dimethylsiloxane) substrate. Experimental results are compared to 

theoretical calculations and where there are differences between the theory and the experiment, possible causes 

are suggested and explored. 
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2. Theory 

2.1 van der Waals force,    

Israelachvili defined the van der Waals force between a sphere and a flat surface as:[21] 

    
  

   
          (1) 

where   is the Hamaker constant for the two materials,   is the sphere radius,   is the separation distance 

between the closest point of the sphere and the flat surface, and    . Similarly, Argento and French[22] 

derived an analogous expression for the van der Waals force between a cone apex and a flat surface: 

    
                           

                 
       (2) 

where   is the angle of the cone from the surface normal. A cone apex is a suitable model for the end of an AFM 

tip, which is typically pyramidal or conical in shape away from the tip. In contrast a sphere is a suitable model 

geometry for a colloid probe, which is usually a spherical particle with radius in the range 1-20 μm attached near 

to the apex of a rectangular AFM cantilever. Schematics of a pyramidal cantilever tip and beam are shown in Fig. 

1. The cantilever width,  , is typically 30-40 μm, whilst the length,  , is typically 100 μm or greater.[2] The 

distance between the end of the beam and the centre of mass of the tip is denoted   . The cone apex is also 

represented by a sphere of radius  . Hereafter, the force due to the van der Waals force is referred to as   , 

which applies to either a pyramidal tip or a spherical colloid probe tip.  

 

Fig. 1 Schematic showing (a) pyramidal tip geometry and (b) dimensions of rectangular cantilever beam 

 

 

 

2.2 Force applied to tip due to fluid squeezing,     

Whilst approaching the substrate surface, which is initially flat, the motion of the cantilever will be impeded due 

to viscous dissipation caused by the squeezing of the fluid entrained between the cantilever and tip and the flat 

countersurface. In the case considered here, the fluid under consideration is air at standard temperature and 
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pressure. Therefore the squeeze flow force due to the fluid between the AFM tip and the flat surface acts on the 

bottom of the tip and is simply described as:[23]  

    
       

    

 
         (3) 

Here     is the tip velocity and      is the effective viscosity of the fluid. Assuming the fluid to be air under 

ambient conditions, the effective air viscosity differs from the normal air viscosity because at small gaps the air 

becomes compressed and therefore the continuum approximation usually employed in squeeze flow becomes 

less applicable. To deal with the compression, the dynamic viscosity is modified to give:[24]  

     
 

        
 

 
 
              (4) 

Here              kg/m.s, which is the viscosity of air at standard temperature and pressure, and 

         m, which is the mean free path length of air at standard temperature and pressure. The quantity 

    is equal to the Knudsen number,   , which is defined here as the ratio of the mean free path length to the 

gap between the moving object and the flat surface.  

 

2.3 Gap between tip and surface due to elastohydrodynamic lubrication 

One effect of a compliant substrate is due to elastohydrodynamic lubrication caused by the constrained fluid 

between the tip and substrate, as discussed in §2.2. Fig. 2 shows the system geometry under consideration in this 

work. The sphere, of radius  , represents either the hemispherical end of a pyramidal tip or a colloidal particle 

attached at the end of a cantilever.  As the sphere approaches the substrate surface, the air between the sphere 

and substrate is squeezed, leading to a deformation of the substrate surface, described algebraically as       . 

This effect is termed elastohydrodynamic lubrication (EHL) and occurs due to the compliance of the substrate. If 

such an effect were to occur, the jump-to distance measured would be greater than the jump-to distance that 

would have been measured were EHL not present in the system.  

 

The hydrodynamic pressure profile due to squeeze flow can be found by solving the well-known lubrication 

equation to yield:[25] 

     
         

   
  

  
        

          (5) 

where        is the deformation of the substrate surface underneath the lowest point of the tip, and   is the is 

the radial distance from the centre of the tip. Eq. 5 can be integrated directly to find the force applied to the tip 

due to fluid squeezing,    , and this tends to Eq. 3 when the surface deformation is negligible. For the case where 

the surface deformation cannot be considered negligible,        is given by:[26] 

         
    

   
  

 

   
  

   

      
             (6) 

where   is the Poisson's ratio of the substrate,    is the Young's modulus of the substrate,   is the complete 

elliptic integral of the first kind,   is the pressure. In this case, the force found by integrating Eq. 5 will replace Eq. 

3. It should be noted that Eq. 5 and Eq. 6 are coupled, and the instantaneous equilibrium surface profile must be 

calculated at each step in the simulation, outlined in §3.1. 
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Fig. 2 System geometry under consideration, showing the deformation of the substrate surface due to 

elastohydrodynamic lubrication during the tip approach 

 

2.4 Force applied to beam due to fluid squeezing,     

The fluid is not only constrained between the tip and substrate, but also between the beam and substrate.  The 

effect of squeeze flow damping on the cantilever beam presents a complex challenge because defining the 

cantilever shape is non-trivial when compared with that of a sphere or cone apex. This is because the cantilever 

beam is compliant and therefore its shape depends on the air pressure acting on it. The full solution to this 

problem requires computationally expensive numerics and does not lend itself to be used in a model such as this. 

However, Darling et al.[27] suggested a useful method of approximation. Reynolds lubrication equation describing 

squeeze flow is given as: 

   
  

      
 
 
      

 

  
   

 
          (7) 

where    is time. As this is an isothermal process, in that the surfaces can be taken to be thermally conductive,   

is assumed to be 1. For small variations in the local pressure and the gap where         and         , 

the Reynolds lubrication equation can be linearised into the form: 

      
  

  
   

  

  
         (8) 

Here         is the normalised local pressure variation,    is the ambient pressure,          is the 

normalised local gap variation,    is the average instantaneous separation distance, and    
      

  
   

 is a 

constant. This equation has the form of a linear diffusion equation with a source term   
  

  
 which can be solved 

using a Green’s function method.[28]  

Diffusion from a point source excitation is described by: 

      
  

  
                         (9) 

Where              is the Green’s function which represents the response at an observation point (r,t) caused 

by an excitation at the source point        , where   is time and    is the initial time. For an arbitrary source 

term:  

  
     

  

   
               

   

   
      (10) 

the solution is expressible as an integral of the Green’s function over the source points: 
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      (11) 

where    is the initial volume and    is the fluid density. The proper Green’s function can be constructed as an 

expansion over the domain of the compressed volume. Assuming that the pressure variation is approximately 

constant in the direction of compression, the eigenfunctions     and eigenvalues     are solutions to a two-

dimensional scalar Helmholtz equation:[29] 

         
               (12) 

With nondegenerate eigenvalues, the eigenfunctions form a complete orthonormal set of expansion functions:  

    
                 

               (13) 

             
                    (14) 

The Green’s function is constructed from these expansion functions with time-varying coefficients: 

             
  

  
            

    
       

  
             

        (15) 

Here      is the unit step function.[29] Therefore, in order to calculate the force on the cantilever due to squeeze 

flow the correct eigenvalues and eigenfunctions and the corresponding Green’s function need to be found. The 

solution is given when the pressure profile as given in Eq. 11 is integrated over the area of the cantilever. 

 

For a rectangular AFM cantilever with dimensions according to the schematic shown in Fig. 1(b), the fluid gap is 

taken to occupy the domain          and      , where L is the beam length, w is the beam width 

and dL is the distance from the end of the beam to the position of the sphere or cone tip. The AFM cantilever is 

generally fixed from above, i.e. the fixed end is further from the flat surface than is the free end, and hence fluid 

is free to flow past the fixed end of the cantilever. Therefore the boundary condition at this location for Eq. 12 is 

P = 0. The same condition applies to the two vertical sides along the cantilevers length. At the location of the 

sphere or cone tip, it is assumed that air is prevented from flowing past, giving a boundary condition of 

        at       .        

Eq. 12 can be solved by using separation of variables. Applying the boundary conditions listed above gives the 

eigenfunctions as: 

           
 

       
    

   

       
     

   

 
       (16) 

With m = 1,3,5… and n = 1,2,3…. The corresponding eigenvalues are:  

   
   

  

       
 
 

  
  

 
 
 

        (17) 

 

The deflection,  , of a cantilever with a point load,   , acting normal to the deflected, tilted beam at a distance 

      from the fixed end can be calculated using: 

     
    

   
                    (18) 
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The gap between the substrate and the cantilever has been amended to include the fact that the cantilever fixed 

end is tilted from the horizontal by angle  , typically on the order 10 o, due to the way in which it is housed in the 

AFM instrument. Hence the normalized displacement of the cantilever relative to the substrate is given by: 

          
       

  
   

 

    
     

       

  
   

    

    
 
             

  
    (19) 

where         is the drive velocity of the fixed end of the beam. The source term in Eq. 10 is then: 

           
  

  

  

   
  

  

  
 
       

  
  

 

    
     

       

  
  

    

    
 
             

  
  (20) 

The pressure term defined in Eq. 11 can therefore be shown to be: 

    
  

           
   

       
     

   

 
  

  

   
      

 
   
 

     
         

  

             

  
      

   

  
 

  
 

8 2 2 1 +12+       0   2sin  1 +12    (21) 

Upon integrating the pressure over the cantilever surface, the expression for the force due to fluid squeezing is 

given by: 

          
   

      
 
  

   
      

 
   
 

     
         

  

             

  
      

   

  
 

  
 

 

    
    

   

     

       0   2sin  1 +12 1 +12+4  +8 2 2 1 +12 (22) 

The negative sign in the first term in Eq. 22 shows that the force acts in the opposite direction to the direction of 

cantilever motion. The exponential term can be ignored in most situations as this term takes into account the 

initial effects caused by the sudden starting of the cantilever. For AFM cantilevers under normal conditions the 

exponent is very large and so these effects dissipate very quickly.  

 

2.5 Weight of the tip,     

The force due to the weight of the tip will act on the centre of mass of the tip, and hence the tip volume needs to 

be calculated, which is trivial for a sphere, and as such is suitable for a spherical colloid probe cantilever. 

However, AFM cantilever tips tend to be pyramidal in shape, with a hemispherical apex. The geometry 

considered is shown in Fig. 1(a), in which the tip is considered to be a blunt four-sided pyramid with 

hemispherical cap. Therefore, there are two separate expressions for the weight of the tip; one for a spherical 

colloid probe,     , and one for a pyramidal tip,     . 

      
 

 
     

          (23) 

     
   

 
               

         (24) 

where    is the density of the tip,   is the acceleration due to gravity,   is the radius of the spherical colloid 

probe or hemispherical tip apex of a pyramidal tip as shown in Fig. 1(a),   is the pyramid base length,    is the 

height of the pyramid to its apex, and    is the height of the pyramid to its blunt end in order to incorporate the 

terminal hemisphere. 
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2.6 Acceleration of the tip,     

Similarly, as the sphere is in general moving at a different velocity to the fixed end velocity, it must at some point 

be accelerating, and the force will act on the centre of mass of the tip, which is also described by two separate 

expressions, depending on the choice of tip; one for a spherical colloid probe,     , and one for a pyramidal tip, 

    . 

      
 

 
      

          (25) 

      
    

 
               

         (26) 

where    is the acceleration of the tip not due to gravity.  

 

2.7 Weight of the beam,     

The cantilever will exhibit a static deflection,     , as a function of its length due to its own weight, which can be 

expressed as: 

                 
  

   
  

  

  
 
  

 
 
  

 
       (27) 

where,    is the beam density,   is the beam thickness,   is the beam width,    is the Young’s modulus of the 

beam material, and   is the moment of inertia of the beam. The equivalent force can be found by considering the 

deflection of a cantilever with a force acting on its tip as given by: 

      
   

   
  

           

 
 
  

 
 
                

 
      (28) 

Equating Eq. 27 and Eq. 28 and rearranging for the weight of the beam gives the equivalent force as: 

     
  

    
  

 
 
 
   

  
         (29) 

where                and is the total weight taking into account the beam tilt angle.  

 

2.8 Beam inertia,     

Dealing with the effect of the acceleration of the tip is difficult because we do not know the shape of the beam 

and hence the acceleration distribution along its length. To give some estimate of the effect it will be assumed 

that the acceleration varies linearly along the beam with the maximum being the tip acceleration at the free end 

and zero at the fixed end which is of course travelling at the fixed velocity        . The deflection of a cantilever 

under such conditions can be shown to be: 

                  
    

       
        (30) 

Equating to Eq. 28 gives the equivalent force acting on the tip: 

     
                 

  

 
   

 

     
  

 
 

        (31) 
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Fig. 3 shows the comparison between the exact beam shape, as calculated from the Euler-Bernoulli beam 

equation, and the point load approximation. The line represents the exact shape of the cantilever due to 

distributed loads described by Eqs. 21, 27 and 30. The star indicates the deflection at the position of a pyramidal 

or spherical tip due to the equivalent point loads given by Eqs. 22, 29 and 31. The good agreement between the 

position of the star and the beam shape shows that the point load approximation is a valid assumption. 

 

Fig. 3 Comparison between exact beam shape analysis (Eqs. 21, 27 and 30) and point load approximation (Eqs. 

22, 29 and 31). It is assumed that the sphere is accelerating downwards at a rate     10 m/s2, through air of 

viscosity   18.3 µPa.s (25 °C, 1 atm),          100 nm/s,     64.1 µm,    8.2 μm,    11 o, and     2330 

kg/m3. 

 

2.9 The dynamics of the cantilever 

The motion of the cantilever as a function of time can now be described in terms of a second order differential 

equation: 

    
   

   
                                                (32) 

where   is the beam spring constant,    is the initial tip position,   is the instantaneous position of the tip, and 

     is the effective mass of the tip and cantilever assembly. The second term, on the right hand side of Eq. 32, 

comes from equating the effective deflection due to a point load on the tip to the deflection due to the weight of 

the beam. Eq. 32 is the equation solved in order to elucidate the beam dynamics during the approach of the tip 

to a countersurface.  

     for a pyramidal tip is given by      : 

      
  

 
               

   
      

 
      (33) 

     for a spherical colloid probe tip is given by      : 

      
 

 
    

  
      

 
        (34) 

 

2.10 The beam spring constant 
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The spring constant, or stiffness, of a beam with a point load acting normal to the cantilever at the point where 

the tip is attached can be shown to be (using Eq. 28): 

   
    

       
          (35) 

However because of the wide array of forces acting on different locations on the cantilever, the stiffness needs to 

be modified to take into account these forces and the torques they produce. One effect that needs to be 

accounted for is that Eq. 35 assumes that all the forces are acting normal to the neutral axis of the cantilever. 

This assumption is reasonable if the cantilever is not tilted and the deflections are very small, i.e. if the angle of 

the tip tends to zero. For the case considered here, the fixed end of the cantilever is tilted initially to a pre-

determined angle,  , typically 10-12 o from the horizontal, while all the forces act vertically. This can be 

accounted for by resolving the forces in the normal direction. The forces in the axial direction will generally be 

small in comparison to forces in the horizontal and normal directions, and therefore can be assumed to have a 

negligible effect on the stiffness of the cantilever. Eq. 35 also assumes that the forces are acting directly on the 

neutral axis of the cantilever.  

As was shown by Edwards et al.,[30] when a beam has a feature at its free end, such as a colloid probe or a 

pyramidal tip, the forces acting either on the probe cause an additional bending moment to act on the beam, 

owing to the distance the force now acts from the neutral axis. This extra torque affects the cantilever shape and 

therefore the direction the forces are acting relative to the orientation of the cantilever, thus changing its 

stiffness. Fig. 4 shows an example geometry and angle convention for a colloid probe cantilever, from which the 

forces acting upon the tip are defined. 

 

Fig. 4 Cantilever geometry and angle convention for forces acting upon the tip 

 

Edwards et al.[30] expressed the normal force and the torque in terms of the applied force normal to the 

substrate, and the applied force perpendicular to the free end of the cantilever. Here we define the torque,  , 

the applied force normal to the substrate,  , and the applied force perpendicular to the free end of the 

cantilever,   . The resultant equations are therefore:  

                  (36) 

                    (37) 

Here   is the distance between the point of application of the force and the neutral axis and   is the angle of the 

force with respect to the cantilever normal. However these relationships are only true for an undeflected 
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cantilever. When a force is applied to the cantilever, it will deflect causing the angle associated with the force to 

change correspondingly. Therefore the actual torques and normal forces are instead described as: 

                    (38) 

                    (39) 

where   is the equilibrium angle between the axis perpendicular to the free end of the cantilever and the axis 

normal to the surface. Therefore to calculate the stiffness, it is necessary to find the torques, normal forces and 

the angle of the tip associated with all the forces that have been applied to the cantilever. Only the forces acting 

on the tip will induce a torque, and these forces can be split into (i) the forces acting on the centre of the tip, 

which are the tip weight, tip inertia, and the van der Waals force; and (ii) the squeeze flow force acting on the 

bottom of the tip. The torque associated with the forces listed under (i) take the form: 

                      (40) 

The torque associated with the squeeze flow, (ii), take the form: 

                             (41) 

The total torque can therefore be shown to be: 

                                                          (42) 

The dashes denote that it is the forces perpendicular to the free end of the cantilever beam that are being 

considered as defined in Eq. 38. The angle of the tip under the influence of the various torques and forces can be 

shown to be: 

          

            

   
  

      
 
    

 
    

 
    

 
         

 

   
 

 
             

    
 
             

 

    

    (43) 

The terms inside the inverse tangent function are, in order from left to right, (i) the gradient due to the torque, 

(ii) the gradient due to the forces on the sphere, (iii) the gradient due to the weight of the cantilever, and (iv) the 

gradient due to the cantilever’s inertia.  In order to find the equilibrium angle   and hence the correct forces, 

Eqs. 40 and 41 need to be solved iteratively by first assuming     and iterating until convergence. Once this 

has been achieved, the stiffness can be calculated simply by dividing the applied force by the deflection thus: 

  
                          

            
 

    
  

                               
 

    
  

             

    
 
                

      

  (44) 
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3. Experimental details 

3.1 Jump-to simulations 

The time-dependent motion of the cantilever is described by a second order differential equation (Eq. 30), which 

was solved numerically using a built-in stiff solver, ODE15s, from the MatLab ODE suite (MatLab 7.0.1, 

MathWorks Inc., USA). It is a multi-step, variable order solver based on the numerical differentiation formulas.[31] 

The absolute tolerance and hence the threshold below which the value of the ith solution component was set was 

10-18, which corresponds to an accuracy of 10-16. The computation procedure is shown as a flowchart in Fig. 5.  

(a) Current position 

and velocity of tip

(b) Calculate distance 

between tip and 

substrate using EHL 

theory iteratively 

(c) Calculate forces

(d) Calculate stiffness 

of cantilever iteratively 

(e) Calculate first and 

second derivative using 

differential equation

(f) Integrate 
using multi-step, 

variable order 
solver 

 

Fig. 5 Flowchart describing the calculation of the cantilever motion 

 

In step (a), it is assumed the current tip position and velocity are known whether they were calculated from the 

previous step in the simulation or defined from the initial conditions. These conditions assume that the AFM 

cantilever approaches the surface from a long distance away (c.a. 1 mm) so that it was initially unaffected by van 

der Waals forces and hence undeflected. Therefore the initial tip position is 1 mm and the initial velocity is equal 

to the specified fixed end velocity. 

The tip position and velocity is then used in Eqs. 5 and 6 to calculate the hydrodynamic force, the deflection of 

the substrate and hence the gap. As discussed in §2.3, this is done iteratively in step (b). In step (c), these data 

are used in Eqs. 1, 20, 21, 22, 23, 24, 27, 29 to calculate the various forces acting on the cantilever.  The forces 

are combined in step (d) to calculate the resultant force and torque acting on the cantilever and hence find its 

effective stiffness. These forces are resolved in step (e) using Newton’s second law to form the differential 

equation that defines the motion of the cantilever. This is numerically integrated using the method discussed to 

calculate the instantaneous tip position and velocity which then feeds into step (a).    
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3.2 Hamaker constants 

Hamaker constants for the tip/air/substrate interaction were calculated using Eq. 45,[21] where 1 denotes the tip, 

2 denotes the substrate, 3 denotes the air,    is the static dielectric constant of material  ,    is the refractive 

index of material  ,    is Boltzmann's constant,   is the temperature,   is Planck's constant, and    is the plasma 

frequency of the free electron gas, which is typically in the range 3-5 1015 s-1, and therefore provides upper and 

lower bounds to the value of the Hamaker constant. 

  
    

 
 
     

     
  

     

     
  

    

   

   
    

     
    

  

   
    

  
   
   

    
  
   
    

    
  
   
    

    
  
   
 
   (45) 

 

3.3 AFM measurements 

AFM force measurements were performed using a NanoWizard II AFM (JPK, UK) operating in contact mode at a 

temperature of 18 oC and a relative humidity in the range 40-50 %. The AFM was seated on a Micro 40 active 

vibration isolation system (Accurion, Germany) and housed within an acoustic enclosure (JPK, UK) to minimise 

the effect of ambient noise. A rectangular Si cantilever with a pyramidal tip of 8 nm nominal tip radius (RTESP, 

Veeco, UK) and a rectangular Si cantilever modified at its apex with a 8.2 μm radius SiO2 colloid probe (Novascan, 

USA) were employed for the force measurements. Pyramidal tip cantilevers were used as received and a new 

cantilever was used for each substrate measured. Their maximum tip radius as specified by the manufacturer was 

12 nm. Cantilever spring constants were calibrated according to the method described by Bowen et al.[32] and 

were calculated to be (i) 39.9 ± 2.1 N/m for the pyramidal tip cantilever, and (ii) 4.1 ± 0.2 N/m for the colloid 

probe cantilever. Measurements were performed over the drive velocity range 10 nm/s to 100 μm/s, and data 

were acquired at a rate of 10 kHz throughout. 100 measurements were made for each drive velocity, spaced 

equally in a 10 x 10 grid array across a 100 μm x 100 μm area of the sample surface. 

The substrates employed were 1 mm thickness glass microscope slides (BDH, UK), 3 mm thickness 

poly(propylene) slabs (in-house supply), and 3 mm thickness poly(dimethylsiloxane) slabs, prepared using Type 

184 Sylgard mix (Dow Corning, USA) at a 5:1 w/w ratio of silicone to curing agent, with the curing step performed 

at 20 oC for a minimum of 7 days. Substrate surface roughnesses were evaluated via contact mode AFM imaging, 

employing a pyramidal-tipped Si3N4 AFM cantilever (DNP-S, Veeco, UK) with a nominal tip radius of 25 nm. The 

mean roughness (  ) and peak-to-valley roughness (  ) of each substrate surface was calculated from an image 

of lateral dimensions 5 x 5 μm. 

 

3.4 Nanoindentation 

The hardness and reduced modulus of the glass, poly(propylene) and poly(dimethylsiloxane) were measured 

using a NanoTest nanoindenter (Micro Materials, UK) operating a diamond-coated Berkovich pyramidal indenter. 

Indentation depths were at least one order of magnitude greater than the    of the substrate surface. A 

minimum of 16 indents were performed for each material.  
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4. Results 

4.1 Substrate properties 

For the substrates employed in the work presented here, Table 1 lists the dielectric constant ( ), refractive index 

( ), Hamaker constant versus SiO2 ( ), hardness (  ), Poisson's ratio (  ), reduced modulus (  
 ), Young's 

modulus (  ), mean surface roughness (  ), peak-to-valley surface roughness (  ), and static water contact 

angle in air (  ). Hamaker constants were calculated according to the method described in §3.2. Fig. 6 shows the 

surface topographies of the substrates as measured using AFM. The results show that the substrates can be listed 

in order of increasing Young's modulus as poly(dimethylsiloxane) < poly(propylene) < glass, with approximately 

two orders of magnitude difference in modulus between each substrate. 

 

Table 1. Summary of substrate physical and mechanical properties 

Property Glass Poly(propylene) Poly(dimethylsiloxane) 

  3.9 2.2 2.5 

  1.46 1.49 1.40 

  vs SiO2        (J) 2.813 - 4.682 2.862 - 4.766 2.696 - 4.488 

   (MPa) 6,200 ± 200 21.4 ± 0.6 0.95 ± 0.28 

   0.2 0.5 0.5 

  
  (MPa) 78,010 ± 635 634 ± 44 3.62 ± 0.39 

   (MPa) 74,890 ± 609 476 ± 33 2.71 ± 0.29 

   (nm) 0.28 30.9 1.91 

   (nm) 4.6 557 139 

   (o) 0 76 98 
(a) For calculation of   according to Eq. 45,             and            ; values taken from the CRC Handbook of Chemistry and Physics 92

nd
 Edition 

[33] 

(b) Upper and lower bounds on the value of   are presented due to uncertainty in the value of the plasma frequency of the free electron gas,     

 

 

Fig. 6 Surface topographies of substrates measured using AFM; (a) glass, 500 x 500 x 2 nm; (b) poly(propylene), 

10 x 10 x 0.5 μm; (c) poly(dimethylsiloxane), 10 x 10 x 0.003 μm. 

 

 

 

4.2 Jump-to measurements and simulations 

Fig. 7(a) is a schematic showing the position of the cantilever fixed end and free end as a function of time, as the 

cantilever fixed end is driven vertically downwards. Fig. 7(b) shows the resultant cantilever deflection as the free 
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end of the cantilever deflects increasingly downwards towards the substrate, until the tip makes contact with the 

surface. The deflection represented by distance C is the jump-to distance reported. For the simulated results, the 

criteria for deciding whether the tip was about to make contact with the substrate is as follows. The cantilever 

deflection was considered to be unstable if the tip velocity increased to a value greater than 5x the drive velocity. 

Choosing a velocity between 2x and 8x made no appreciable difference to the jump-to distance, owing to the 

very rapid increase in velocity at this point.  

 

Fig. 7 Calculated fixed end motion, tip motion, and cantilever deflection, as a function of time; C denotes the 

jump-to distance  

 

Fig. 8 shows the measured jump-to data at a drive velocity of 1 μm/s for glass, poly(propylene) and 

poly(dimethylsiloxane) versus (a) pyramidal tips and (b) spherical colloid probes. The figures show the 

displacement of the cantilever free end as the fixed end is approached towards the sample surface. For pyramidal 

tip cantilevers, the glass/pyramid system exhibits the largest jump-to distance of approximately 1 nm. The 

poly(propylene)/pyramid and poly(dimethylsiloxane) pyramid systems both exhibit jump-to distances of < 1 nm. 

For spherical colloid probes, the jump-to distance for the glass/sphere and poly(propylene)/sphere systems are 

5.7 nm and 7.2 nm respectively. However, the jump-to distance for the poly(dimethylsiloxane)/sphere system is 

195 nm.  

There is evidence of weak electrostatic attraction for the poly(propylene)/sphere system, which can be seen as a 

long-range deflection of the cantilever, even though the sphere is out of contact with the substrate. The 

deflection increases as the sphere approaches the surface, and over the 450 nm fixed end distance of the data 

shown in Fig. 8(b), there is a vertical deflection of 5 nm before the jump-to instability. No electrostatic effect is 

visible for the glass/sphere or poly(dimethylsiloxane)/sphere systems, nor for any of the pyramidal tip systems. 

The jump-to distances reported for the poly(propylene)/sphere system do not include the additional vertical 

deflection imparted on the beam due to electrostatic attraction.  

The gradient of the deflection/displacement data in the region where the tip is in contact with the surface 

provides information regarding the mechanical properties of the substrate. For both pyramidal tips and spherical 

colloid probes, poly(dimethylsiloxane) exhibits a greater compliance than glass and poly(propylene), which is in 

agreement with the values of Young's modulus listed in Table 1, whereby poly(dimethylsiloxane) has the lowest 

Young's modulus of the three substrates.  
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Fig. 8 Measured AFM jump-to data at 1 μm/s drive velocity for (a) pyramidal tips versus glass (continuous line), 

poly(propylene) (dashed line), poly(dimethylsiloxane) (dotted line), and (b) spherical colloid probes versus glass 

(continuous line), poly(propylene) (dashed line), poly(dimethylsiloxane) (dotted line); C denotes the jump-to 

distance. 

 

Fig. 9 shows the comparison between the jump-to distances measured using AFM and the jump-to distances 

calculated using the simulation procedure outlined in §3.1. Upper and lower bounds for the simulated jump-to 

distance are presented due to the upper and lower bounds placed on the calculated value of  . The results 

obtained using (i) pyramidal tips and (ii) spherical colloid probes are described in §4.2.1 and §4.2.2. 

 

4.2.1 Pyramidal tips 

Fig. 9(a) shows that there is reasonable order-of-magnitude agreement between measurement and simulation 

for the glass/pyramid system, although the theory systematically underestimates the jump-to distance. Fig. 9(b) 

shows good agreement between measurement and simulation for the poly(propylene)/pyramid system, and Fig. 

9(c) shows reasonable order-of-magnitude agreement between measurement and simulation, although in this 

case the theory systematically overestimates the jump-to distance. For all three cases, jump-to distances are of 

the order 0.1-1 nm, and in all three cases there is a decrease in the jump-to distance for drive velocities greater 

than 10 μm/s, a feature present in both the simulated and measured results. The decrease in measured jump-to 

distance at large drive velocities is most pronounced for the glass/pyramid system. For the simulated results, 

there is approximately a 24 % decrease in the jump-to distance over the drive velocity range investigated. 

 

4.2.2 Spherical colloid probes 

Figs. 9(d) and 9(e) show that there is reasonable order-of-magnitude agreement between measurement and 

simulation for the glass/sphere and poly(propylene)/sphere systems, with jump-to distances in the range 1-12 

nm, whereas the simulated jump-to distances are in the range 4-5 nm. The measurement results exhibit a 

pronounced velocity dependence whereby jump-to distances decrease with increasing drive velocity. This feature 

is present in the simulation results, but is not as pronounced as in the measured results, nor is it as apparent as 

for those measurements and simulations performed using cantilevers presenting pyramidal tips. There is 

approximately a 5 % decrease in the simulated jump-to distance over the drive velocity range investigated. Fig. 

9(f) shows that there is a pronounced deviation between measurement and simulation for the 
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poly(dimethylsiloxane)/sphere system, with measured jump-to distances in the range 100-250 nm, whereas the 

simulated jump-to distances are in the range 4-5 nm. 
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Fig. 9 Measured (□) and simulated (upper bound Δ, lower bound ○) jump-to distances for (a) glass/pyramid, (b) 

poly(propylene)/pyramid, (c) poly(dimethylsiloxane)/pyramid, (d) glass/sphere, (e) poly(propylene)/sphere, (f) 

poly(dimethylsiloxane)/sphere. 
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5. Discussion 

5.1 Comparison between measurement and simulation 

Comparison of the results for a cantilever presenting a pyramidal tip reveals that there is approximate agreement 

in the jump-to distance for glass, poly(propylene) and poly(dimethylsiloxane). For all three substrates, the jump-

to distances are in the range 0.1-1 nm. The discrepancy between the measured distances and the simulated 

distances cannot currently be explained. However, it is interesting to note that the 

poly(dimethylsiloxane)/pyramid system displays the greatest discrepancy, whereby measured distances smaller 

than the simulated distances were recorded. The mechanism underlying this trend is not fully understood. 

Comparison of the results obtained for a cantilever presenting a spherical colloid probe reveals that for the 

glass/sphere and poly(propylene)/sphere systems there is good approximate agreement between the measured 

and simulated jump-to distances. For the poly(dimethylsiloxane)/sphere system, the measured jump-to distances 

are two orders of magnitude greater than for the simulated jump-to distances. The Young's modulus of 

poly(dimethylsiloxane) is significantly lower than poly(propylene) and glass, and it could be that the compliance 

of the surface is an important parameter. This is discussed further in §5.2. 

Poly(propylene) exhibits the highest mean surface roughness (  ) of 30.9 nm, which suggests that the 

discrepancy between measurement and simulation is not significantly influenced by surface topography, for the 

range of topographies on display in this work, as shown in Fig. 6. The theory outlined in §2 assumes that the 

substrate surface is planar and flat with respect to the approaching spherical tip. If surface roughness were the 

determining factor, one might reasonably expect poly(propylene) to exhibit the greatest discrepancy between 

measurement and simulation. As it is, poly(dimethylsiloxane) exhibits the greatest discrepancy. Furthermore, it is 

anticipated that such an effect would only become important for spherical colloid probe tips, where the tip radius 

is much larger than the surface roughness. For pyramidal tips, the topography of the surface local to the 10 nm 

radius tip should always be effectively planar in comparison. 

Interestingly, all of the measurements display a velocity dependence on the jump-to distance. This dependence 

generally covers the entire drive velocity range investigated, rather than just drive velocities greater than 1 μm/s, 

which is the suggested range of the effect for the simulated results. The velocity dependence occurs due to the 

viscous and inertial forces acting on the beam and probe resulting in a finite time required for the cantilever to 

deflect downwards in response to the attractive interactive forces. At high velocities, this finite time becomes 

comparable to the velocity with which the fixed end is approaching the substrate, and hence the jump-to 

distance is decreased. The velocity dependence is more pronounced for the sphere systems measured than for 

the pyramid systems. The simulations show that the dominant forces acting on the AFM are the van der Waals 

forces, squeeze flow at the tip, and also tip and beam inertia. For the range of experiments shown the 

simulations also show that the torque can increase the stiffness of the cantilever by up to 10 %.   

 

 

 

5.2 Effect of substrate compliance 

The numerical simulations show that EHL does not account for the effect the substrate compliance has on the 

larger-than-expected jump-to distance. This is because as the tip gets very close to the substrate, the air pressure 

slows down the tip velocity considerably. This in turn causes the pressure and hence substrate deflection to also 

decrease. This process means when the tip finally makes contact, its velocity is very low, despite its initial high 
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velocity just after the instability, and the deflection of the substrate is negligible, hence not contributing to the 

jump-to distance.  

Parker and Attard[15] considered the deformation of surfaces due to attractive surface forces such as van der 

Waals interactions, and reported that for a non-compliant system in which the separation distance between two 

spheres, of radius  , is decreased quasi-statically, the separation distance,  , at which the two surfaces jump into 

contact is given by Eq. 46:  

      
  

 

    

  
 

 

 
         (46) 

Although Eq. 46 is formulated for a sphere-on-sphere system, using the approximations                

and               , we can estimate the equivalent separation distance for a sphere-on-flat system and 

for two dissimilar materials. Hence, using the values of      and   given in Table 1, taking the value of   to be 12 

nm for the pyramidal tip systems, and 8.2 μm for the spherical colloid probe systems, Eq. 46 provided 

approximate agreement with the measured and simulated values of the jump-to distance reported in §4.2 for the 

glass/pyramid and poly(propylene)/pyramid systems. However, Eq. 46 provided poor agreement for the 

poly(dimethylsiloxane)/pyramid system and all three sphere systems. The measured and simulated jump-to 

distances used for comparison were those for a fixed end drive velocity of 20 nm/s. This result suggests that the 

compliance of the surface cannot be dealt with in a trivial fashion. 

 

Table 2. Comparison of calculated (Eq. 46), measured and simulated jump-to distances 

System Measured (nm) Simulated (nm) Calculated (nm) 

Glass/pyramid 1.1 0.5 0.3 

Poly(propylene)/pyramid 0.3 0.5 1.1 

Poly(dimethylsiloxane)/pyramid 0.2 0.5 4.7 

Glass/sphere 10.1 4.9 0.7 

Poly(propylene)/sphere 16.2 5.0 2.8 

Poly(dimethylsiloxane)/sphere 243.5 4.9 12.4 

 

Another potential cause of the compliance effect may be due to the substrate swelling, not sinking. Forcada et 

al.[34-35] reported on the apparent swelling of thin liquid films when attempting to measure their thicknesses using 

AFM, finding that as the AFM tip approached the liquid/air interface there appeared to be an instability in the 

film, induced by van der Waals interactions between the tip and film. The instability caused an upwards swelling 

of the film towards the AFM tip, and hence contact with the tip was made prematurely when compared to the 

unperturbed film neighbouring the swelling. Hence, the film thicknesses measured by AFM were systematically 

larger than those measured using ellipsometry, a non-contact technique and hence not subject to the swelling 

effect. It is proposed that a similar effect is occurring here for the measurements made using the spherical colloid 

probe tips, whereby there is an upwards deformation of the substrate surface due to van der Waals interactions, 

followed by a retreat of the deformation and downwards deformation below the initial unperturbed surface 

position, caused by elastohydrodynamic lubrication. Such an effect would give the impression that the AFM tip is 

jumping into contact from a greater separation distance than would be anticipated were the substrate surface 

not deformable, due to the fact that one monitors the deflection of the AFM cantilever tip, and cannot directly 

observe the position of the surface underneath the tip. Fig. 10 shows a schematic of this hypothesised process, 

whereby the substrate surface deflects upwards prior to contact, and is subsequently deflected downwards by 

elastohydrodynamic lubrication, before the tip finally makes contact with the substrate. 
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(a) (b) (c) (d) (e) 

 

Fig. 10 Proposed schematic of surface deformation. (a) Tip approaches towards substrate surface. (b) Upwards 

substrate deformation due to van der Waals interactions. (c) Downwards substrate deformation due to 

elastohydrodynamic lubrication. (d) Increased downwards substrate deformation beyond initial unperturbed 

position. (e) Tip in contact with substrate under compressive normal load. 

 

5.3 Additional contributory factors 

Upon the approach of the pyramidal or spherical probe towards the substrate surface, it is possible that the 

presence of a thin liquid film, such as ubiquitous contamination or adsorbed water, or the existence of strong 

electrostatic interactions will affect the measured jump-to distance. However, both of these phenomena tend to 

be visible on the measured force-displacement data, examples of which are shown in Fig. 11. The approach of a 

spherical SiO2 colloid probe towards a surface coated with a 0.1 Pa.s poly(dimethylsiloxane) liquid film of 

thickness 890 nm is shown in Fig. 11(a); details regarding film manufacture and characterisation have previously 

been described by Bowen et al.[36] Immediately after contact is made, it can be seen that the probe travels 

through the thickness of the film with the cantilever under tension, before the point of closest approach to the 

countersurface is reached, and the cantilever begins to bend upwards, until finally a compressive load is applied 

to the surface. The jump-to distance for this system is of the order 100 nm. The liquid surface is deformable 

Fig. 11(b) shows the approach of a spherical SiO2 colloid probe towards a poly(dimethylsiloxane) elastomeric 

surface which has recently undergone electron beam irradiation.[37] It can be seen that there is a long-range 

attractive deflection applied to the cantilever, which culminates in a deep curved descent of the probe towards 

the surface, over a fixed end displacement which is much greater than that over which a van der Waals-induced 

jump-to event takes place.  

For the measurements presented in this work, there is no evidence of the presence of a thin liquid film. The 

relative humidity of the atmosphere in which the measurements were performed was in the range 40-50 %. 

Jones et al.[38] previously reported that for AFM measurements between hydrophilic surfaces, capillary 

contributions to pull-off forces become significant at a relative humidity of 60 % and above, due to liquid film 

formation. Hence, for the hydrophilic glass surface, and the hydrophobic poly(propylene) and 

poly(dimethylsiloxane) surfaces, it is not expected that a thin water film would form, nor does the jump-to data 

show any evidence of this phenomenon.  

As mentioned in §4.2, there is a weak electrostatic attraction visible in the jump-to data for the 

poly(propylene)/sphere system, observable as a long-range deflection of the cantilever. However, this 

phenomenon is significantly less pronounced than the effect shown in Fig. 11(b), which shows data for a 

measurement performed using a SiO2 colloid probe of similar diameter to that used for the jump-to 

measurements. None of the other sets of data presented here show any indication of electrostatic effects. 
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Fig. 11 Measured AFM jump-to data for a spherical colloid probe versus (a) 890 nm thickness 

poly(dimethylsiloxane) liquid film with 0.1 Pa.s viscosity, and (b) electron beam irradiated poly(dimethylsiloxane). 

 

 

5.4 Future work 

Considering only the experimental measurements for a moment, the large discrepancy in jump-to distances 

observed for the poly(dimethylsiloxane)/sphere system is interesting and worthy of further investigation. Further 

experimental work is required in order to assess the discrepancies reported here. Such investigations should 

extend to attempting measurements under vacuum conditions, in order to negate the possibility of 

elastohydrodynamic lubrication. Furthermore, it would be interesting to perform similar measurements using 

spherical colloid probes of varying modulus, against a substrate whose Young's modulus makes it effectively rigid 

in comparison. Such measurements would hopefully provide additional understanding as to whether the 

discrepancy in jump-to distance is due to a deformation of the more compliant material.  
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6. Conclusions 

In this work a theoretical model of the dynamics of the approach of an AFM cantilever tip towards a surface was 

developed, which sought to capture the role played by the numerous forces involved during the van der Waals-

induced jump-to phenomenon. A sphere-on-flat configuration was employed for the force balance, in which (i) a 

spherical colloid probe, and (ii) a pyramidal tip is attached near to the end of the approaching cantilever beam. 

The cantilever mechanics attempted to take into account the motion of the air through which the cantilever 

moves, the acceleration, inertia and torque of the cantilever, and the squeezing of the fluid between the sphere 

and the flat surface, leading to elastohydrodynamic lubrication and deformation of the substrate surface. 

Simulations of the cantilever approach towards (a) a glass substrate, (b) a poly(propylene) substrate and (c) a 

poly(dimethylsiloxane) substrate were performed, and AFM measurements were also made between the two 

types of tip and the three types of substrate, over a wide range of drive velocities.  

The simulated jump-to distances were found to be in good approximate agreement with the experimental jump-

to distances for systems involving a pyramidal tip, and also for the approach of a spherical colloid probe towards 

a glass substrate. However, for the approach of a spherical colloid probe towards poly(propylene) and 

poly(dimethylsiloxane) the experimental jump-to distances were one or two orders of magnitude greater than 

the simulated jump-to distances, an effect which is possibly due to a van der Waals-induced upwards 

deformation of the substrate surface towards the tip prior to contact, which would give the impression that the 

AFM tip is jumping into contact from a greater separation distance than would be anticipated were the substrate 

surface not deformable. 
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Nomenclature 

   tip acceleration 
     beam shape 
  jump-to separation distance for two spherical surfaces 
   distance from end of beam to centre of mass of sphere or cone tip 
  acceleration due to gravity 
  Planck's constant 
   pyramidal tip height to blunt end 
   pyramidal tip height to apex 
  beam spring constant 
   Boltzmann's constant 
    eigenvalues 
  mean free path length of air 
  integer 
     effective mass of tip and beam 
      effective mass of pyramidal tip and beam 
      effective mass of spherical colloid probe tip and beam 
  integer 
   refractive index of material   
  pressure 
  radial distance 
  pyramidal tip base length 
  time 
   initial time 
    eigenfunctions 
       profile of deformed surface 
       deformation of surface underneath the lowest point of the tip 
  beam width 
  distance along beam length 
  distance along beam width 
  vertical distance 
  Hamaker constant between two surfaces 
  jump-to distance 
  separation distance between flat surface and sphere 
   mean instantaneous separation distance 

        fixed end drive velocity 

    tip velocity 
   Young's modulus of substrate 
   Young's modulus of beam  
  

  reduced modulus of substrate 
  applied force normal to the substrate 
    beam inertia 
    acceleration of the tip 
     acceleration of a sphere tip 
     acceleration of a pyramidal tip 
    force on beam due to fluid squeezing 
    force on tip due to fluid squeezing 
   van der Waals force between tip and surface 
    van der Waals force between a cone and a flat surface 
    van der Waals force between a sphere and a flat surface 
    weight of the beam 
    weight of the tip 
     weight of a sphere tip 
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     weight of a pyramidal tip 
   applied force perpendicular to the free end of the cantilever 
             Green's function 
  normalised local variation in separation distance 
   initial tip position 
   substrate hardness 
  moment of inertia of the beam 
  distance between neutral axis and point of force application 
  complete elliptic integral of the first kind 
  beam length 
  normalised local variation in pressure 
   ambient pressure 
  sphere radius 
   average roughness 
   peak-to-valley roughness 
  torque 
     torque acting on centre of tip 
    torque due to squeeze flow between tip and surface 

       total torque 
  temperature 
   initial volume 
  beam weight taking into account tilt angle 
  angle of force with respect to the cantilever normal 
  equilibrium angle between vertical axis and cantilever normal 
  cantilever deflection 
   static dielectric constant of material   
η constant 
  angle of cantilever tilt near fixed end 
  air viscosity 
     effective air viscosity due to compression 
   Poisson's ratio 
   beam density 
   fluid density 
   tip density 
  beam thickness 
   plasma frequency of free electron gas 
  cone angle 
   Knudsen number 
     unit step function 
  instantaneous tip position 
 

 

 


