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Abstract: A closed form expression capable of predicting the evolution of the shape of liquid 
capillary bridges and the resultant force between parallel platens is derived. Such a scenario occurs 
within many micro-mechanical structures and devices, for example, in micro-squeeze flow 
rheometers used to ascertain the rheological properties of pico- to nano-litre volumes of complex 
fluids, which is an important task for the analysis of biological liquids and during the combinatorial 
polymer synthesis of healthcare and personal products. These liquid bridges exhibit capillary forces 
that can perturb the desired rheological forces, and perhaps more significantly, determine the 
geometry of the experiment. The liquid bridge has a curved profile characterised by a contact angle 
at the three-phase interface, as compared to the simple cylindrical geometry assumed during the 
rheological analysis. During rheometry, the geometry of the bridge will change in a complex 
nonlinear fashion, an issue compounded by the contact angle undergoing hysteresis. Owing to the 
small volumes involved, ascertaining the bridge geometry visually during experiment is very 
difficult. Similarly, the governing equations for the bridge geometry are highly nonlinear, 
precluding an exact analytical solution, hence requiring a substantial numerical solution. Here, an 
expression for the bridge geometry and capillary forces based on the toroidal approximation has 
been developed that allows the solution to be determined several orders of magnitude faster using 
simpler techniques than numerical or experimental methods. This expression has been applied to 
squeeze-flow rheometry to show how the theory proposed here is consistent with the assumptions 
used within rheometry. The validity of the theory has been shown through comparison with the 
exact numerical solution of the governing equations. The numerical solution for the shape of liquid 
bridges between parallel platens is provided here for the first time and is based on existing work of 
liquid bridges between spheres. 

Keywords: capillary forces; surface tension; liquid bridges; rheology; squeeze flow 
 

1. Introduction 

Capillary forces arising from surface tension is a frequently encountered phenomenon. This 
tension is due to the imbalance of forces that act on individual molecules that reside at the interface 
between two media. These forces may include London dispersion forces, hydrogen bonds, dipole–
dipole interactions, dipole-induced dipole interactions, π-bonds, donor-acceptor bonds, and 
electrostatic interactions [1] and may include others. How these forces interact with the molecules 
and each other is complex and is not completely understood. This is because they depend very much on 
the substances under investigation and so many conclusions are based on empirical relationships [2]. 
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The study of these forces is of great practical importance especially in the powder technology 
and related industries [3–6]. This is because moisture leads to the formation of liquid bridges between 
particles and so significantly affects the strength of agglomerates. Because of this, studies in this field 
have largely concentrated on liquid bridges between spheres [3–9] or between a sphere and a plane 
[10–12]. A few solutions have been proposed each using a different approximation. However, in 
general these solutions are not easily adaptable for modelling capillary bridges between two planes. 
The study of this geometry is of increasing importance as it can explain stiction in MEMS devices 
[13,14] and head/disk systems [15], be used for particle transfer in microfluidics channels [16], and is 
the geometry increasingly being used for squeeze flow rheology [17–22]. To this end, several 
investigators have studied capillary bridges between flat parallel surfaces [23–27]. 

It is the effect that the shape of the capillary bridge has on squeeze flow rheology that is of 
interest here. Generally, analysis of squeeze flow assumes that the height of the fluid layer is much 
smaller than its radius. This is known as the lubrication approximation [28] and allows for the 
assumption that the fluid flows radially. In using this approximation, it is then assumed that edge 
effects can be neglected. This is because dealing with the boundary conditions caused by the free 
surface is not a trivial matter [2,29]. However, in rheometry, the radius of the fluid is finite and so 
surface tension effects need to be taken into account as they influence the geometry of the fluid flow 
as well as imparting an additional force to the rheometer [30]. The change in the geometry of the 
liquid bridge caused by the movement of the platens of the rheometer manifests itself as a change in 
curvature of the bridge and the movement of the three-phase boundary between the liquid, the 
surrounding vapour phase, and the solid platen. This movement is further complicated by the effect 
of contact angle hysteresis which prevents the three-phase boundary from moving smoothly 
[26,27,31]. 

In order to predict the fluid flow and the forces acting on the rheometer, it is necessary to know 
how the shape of the liquid bridge evolves whilst it is being acted upon by a squeeze flow rheometer. 
To this end, this paper focuses on the derivation of a closed form expression capable of predicting the 
evolution of the shape of the liquid bridge during squeeze flow rheometry, including the effects of 
contact angle hysteresis and hence the capillary force. The validity of the theory will then be shown 
through comparison with an exact numerical solution. 

2. Theory 

In squeeze flow rheometry, when a fluid sample is placed between two parallel platens it forms 
a liquid bridge with a specific geometry, for instance, see Figure 1. 

 
Figure 1. Schematic of the geometry of the liquid bridge. 

This is because surface tension acts to minimise the surface area of an interface. This 
minimisation of the surface area is described by the Young–Laplace equation [31]. This equation 
equates the pressure difference, ∆𝑷, across an interface between two fluids to the resulting curvature 
due to surface tension. For the geometry shown in Figure 1, this is most simply expressed in terms of 
the principal radii of curvature at the plane of symmetry of the liquid bridge, i.e., at the ‘neck’ of the 
bridge: 
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∆𝑷 = −𝜸𝑳𝑽 𝟏𝑹𝑵 − 𝟏𝝆  (1) 

where 𝜸𝑳𝑽 is the surface tension between liquid and its vapour, and the other terms were defined in 
Figure 1. This pressure difference and surface tension determine the capillary force that will act on 
the rheometer: 𝑭𝑪𝒂𝒑𝒊𝒍𝒍𝒂𝒓𝒚 = 𝟐𝝅𝑹𝑵𝜸𝑳𝑽 + 𝝅𝑹𝑵𝟐∆𝑷 (2) 

It can be seen that this force is simply the sum of the tension acting on the surface, denoted by 
surface tension multiplied by the circumference of the liquid bridge, and the pressure difference 
acting on the cross-sectional area, see Figure 2 for a schematic. 

 
Figure 2. Schematic of the lower half of the liquid bridge denoting the various pressure and forces 
that result in the measured capillary force. 

2.1. The Toroidal Approximation 

The Young–Laplace equation, as given by eq. 1, cannot be solved analytically except in a few 
special circumstances, such as planar and cylindrical geometries [10,32]. As such, it is common 
practice to use numerical methods to find the solution [6]. However, a few closed form approximate 
solutions exist. These include the gorge approximation [6], the parabolic approximation [8], and the 
toroidal approximation [33]. As the parabolic approximation requires direct physical measurement 
of the liquid bridge (which is impractical in this case) and the gorge method leads to high inaccuracies 
[6], the toroidal approximation is considered the option most worth investigating. The toroidal 
approximation assumes the profile of the liquid bridge to be a circular arc when the Bond number is 
small. It has been noted that the error of the toroidal approximation can approach 10% when the 
bridge gap is large compared to the neck radius [34] and so a further assumption 𝑹𝑵 𝒉⁄ > 𝟏 is 
sensible. It can be seen in Figure 3 that this approximation is a reasonable one. Here, as an example, 
the profile of a liquid bridge between two flat parallel platens with a given contact angle (45° in this 
case), volume (𝝅 × 𝟏𝟎 𝟏 nL) and Bond number (0.002) for a range of curvatures (9500 to 52,500 m−1) 
is shown. This profile was calculated through the numerical integration of eq. 2 using the method 
provided in the appendix. Also shown are circular arcs fitted to the ‘true’ profile representing the 
toroidal approximation. The circular arcs of the toroidal approximation are a good representation of 
the bridge profile geometry, which provides justification for the approach used here. 
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Figure 3. Comparison between the geometry of the bridge profile as given by the numerical solution 
of the exact Laplace–Young equation (solid lines) and circular arcs representing the toroidal 
approximation (dashed line). The nondimensionalisation of the geometry is through the division by 
the cube root of the volume of the bridge. 

It is necessary to remember that the profile of the liquid bridge is not actually a circular arc. For 
the geometry to be valid, the mean curvature must be constant at all points on the surface of the 
bridge. This is not true of circular arc geometry where the curvature varies along the axis of the 
bridge, suggesting that a pressure difference exists within the bridge. This, of course, cannot happen 
or else the fluid will flow to negate the pressure difference. This means the bridge profile is not 
circular, but it is still a close approximation. The toroidal approximation has been used to describe 
the geometry of liquid bridges between spheres [35] but has not been solved completely to deal with 
the flat on flat geometry as is of interest here. 

To use the toroidal approximation, consider the geometry for a liquid bridge between two flat 
platens with a gap, 𝒉, shown in Figure 4: 

 
Figure 4. Schematic of the liquid bridge represented by the thick black line approximated with 
toroidal geometry. 

From simple geometry, the bridge profile, assumed to be a circular arc with radius 𝝆𝑪  , can be 
expressed by the equation: 

𝒓 𝒛 = 𝑹𝑪 + 𝒉𝟐 𝐭𝐚𝐧𝜽 − 𝝆𝑪𝟐 − 𝒉𝟐 − 𝒛 𝟐
 (3) 

where the radius of curvature of the bridge profile is defined as: 

𝝆𝑪 = 𝒉𝟐 𝐜𝐨𝐬𝜽 (4) 
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The neck radius, which is the narrowest point of the liquid bridge in the vertical axis, can therefore 
be defined as: 

𝑹𝑵 = 𝑹𝑪 + 𝒉𝟐 𝐭𝐚𝐧𝜽 − 𝝆𝑪 (5) 

By using the disc method for calculating the volume of a revolution, the volume of the liquid 
bridge can be shown to be: 

𝑽 =  𝝅 𝑹𝑵 + 𝝆𝑪 − 𝝆𝑪𝟐 − 𝒉𝟐 − 𝒛 𝟐 𝟐 𝒅𝒛𝒉
𝒐  (6) 

We can solve eq. 6, and so the neck and contact radii for a given gap, contact angle, and volume 
for the bridge can be shown to be: 

𝑹𝑵 = 𝟏𝟐 𝒉𝑨𝐜𝐨𝐬𝟐 𝜽 𝒉𝑨𝟒 𝐜𝐨𝐬𝟐 𝜽 + 𝒉𝟐 𝐭𝐚𝐧𝜽 + 𝟒𝑽𝝅𝒉 + 𝒉𝟐𝟏𝟐 − 𝟑𝝆𝑪𝟐 − 𝝆𝑪 − 𝒉𝟒 𝐭𝐚𝐧𝜽 − 𝝆𝑪𝟐𝑨𝒉  (7) 

𝑹𝑪 = 𝟏𝟐 𝒉𝑨𝐜𝐨𝐬𝟐 𝜽 𝒉𝑨𝟒𝐜𝐨𝐬𝟐 𝜽 + 𝒉𝟐 𝐭𝐚𝐧𝜽 + 𝟒𝑽𝝅𝒉 + 𝒉𝟐𝟏𝟐 − 𝟑𝝆𝑪𝟐 − 𝒉𝟒 𝐭𝐚𝐧𝜽 − 𝝆𝑪𝟐𝑨𝒉  (8) 

where: 𝑨 = 𝐬𝐢𝐧 𝟏 𝒉 𝟐𝝆𝑪⁄   . 
This means we can calculate the capillary force as a function of gap for a given volume and 

contact angle using the definition given by eq. 9: 𝑭𝑪𝑻 = 𝟐𝝅𝑹𝑵𝜸𝑳𝑽 − 𝝅𝑹𝑵𝟐𝜸𝑳𝑽 𝟏𝑹𝑵 − 𝟏𝝆𝑪  (9) 

where the neck radius and the radius of curvature are those approximately given by eq. 7 and 4. 

2.2. Contact Angle Hysteresis 

The above discussion is only valid when the contact angle remains constant. When the contact 
line is in motion, such as when the liquid in the bulk phase is flowing, as in during squeeze flow 
rheology, different mechanics apply. Many aspects of this dynamic wetting are poorly understood, 
and the subject is of great scientific interest [36]. What is known is that when the contact line moves 
due to flow within the bulk of the liquid, hysteresis is observed in the contact angle. As the contact 
line moves towards the vapour, the contact angle will become larger than the equilibrium angle; this 
is known as the advancing contact angle. Similarly, when the contact line contracts, the contact angle 
is smaller than the equilibrium value, and this is known as the receding contact angle. 

It has been found that the contact line does not move smoothly, but instead pins and slips [27,37]. 
This is because there is a transition period as the contact angle varies between its advancing and 
receding state. In the context of the rheometer, this contact line will undergo four stages of motion: 

 
Figure 5. Schematic of the four stages of contact line motion during contact angle hysteresis. 
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1) When the platen moves downwards and the gap decreases, initially, the contact line remains 
stationary until the contact angle equals the advancing contact angle (see Figure 5a). This is known 
as pinning. 

2) If the gap decreases further, the contact angle remains at the advancing angle and the contact 
line expands (see Figure 5b). This is known as slipping. 

3) When the gap increases, the contact angle first decreases while the contact line remains 
constant (pins—see Figure 5c). 

4) When the contact angle reaches the receding angle, provided the gap is still increasing, it will 
remain at that angle while the contact line declines (slips—see Figure 5d). And so on. 

When the contact line slips, the contact angle remains constant and so the discussion above is 
valid. However, during the pining regime, the contact angle varies and so eq. 6 would need to be 
solved for 𝜽 as a function of the gap, 𝒉. This is not trivial, and an analytical solution cannot be 
derived. To find a solution, a numerically derived expression needs to be found. It is easy to see that 
the variation of the contact angle as a function of the gap will depend on the volume of the bridge 
and the contact line radius. Therefore, in order to obtain a single expression that will cover all 
situations, the equations will be non-dimensionalised by dividing all lengths and radii by the cube 
root of the bridge volume: 𝒉∗ = 𝒉√𝑽𝟑 ,  𝑹𝑪∗ = 𝑹𝑪√𝑽𝟑 ,  𝑹𝑵∗ = 𝑹𝑵√𝑽𝟑  (10) 

It is also necessary to normalise the gap between the theoretical extreme gaps for a liquid bridge 
with constant contact line radius and volume. These extremes correspond to the situation where the 
contact angle is at a maximum (180°) or a minimum (0°). These cases relate respectively to the (i) 
minimum gap, where any further decrease would cause the contact line to slip, and (ii) the maximum 
gap, where any further increase would cause the contact line to slip, as illustrated in Figure 6. A real 
liquid will generally oscillate between limits in-between the theoretical limits. 

 
Figure 6. Schematic of the two extreme cases. Note that in both cases the contact line radii and 
volumes are equal. Only the gap between the platens and the contact angle have changed. 

These extreme gaps can be found by solving eq. 6 for the gap and setting the contact angle to its 
relevant value. The extreme gaps in their non-dimensional form can be given as: 𝒉𝒎𝒊𝒏∗ = 𝑩𝟐𝝅 − 𝟒 − 𝝅𝟐𝟐 𝝅𝑹𝑪∗𝟐𝑩 − 𝝅𝑹𝑪∗𝟐  (11) 

where: 𝑩 = 𝟏𝟐 − 𝝅𝟐 𝝅𝟒𝑹𝑪∗𝟑 + 𝟐𝟒𝝅𝟐 + 𝟒𝝅𝟐 𝟑𝟐 − 𝟑𝝅𝟐 𝝅𝟐𝑹𝑪∗𝟔 + 𝟑𝟔 − 𝟑𝝅𝟐 𝝅𝟐𝑹𝑪∗𝟑 + 𝟑𝟔𝟑   
and: 

𝒉𝒎𝒂𝒙∗ = 𝟒 − 𝝅𝟐𝟐 𝝅𝑹𝑪∗𝟐𝑪 − 𝑪𝟐𝝅 + 𝝅𝑹𝑪∗𝟐  (12) 
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where: 𝑪 = 𝟏𝟐 − 𝝅𝟐 𝝅𝟒𝑹𝑪∗𝟑 − 𝟐𝟒𝝅𝟐 + 𝟒𝝅𝟐 𝟑𝟐 − 𝟑𝝅𝟐 𝝅𝟐𝑹𝑪∗𝟔 + 𝟑𝝅𝟐 − 𝟑𝟔 𝝅𝟐𝑹𝑪∗𝟑 + 𝟑𝟔𝟑   
The normalised dimensionless gap between the platens, 𝑵𝒉∗, is thus defined as: 𝑵𝒉∗ = 𝒉∗ − 𝒉𝒎𝒊𝒏∗𝒉𝒎𝒂𝒙∗ − 𝒉𝒎𝒊𝒏∗  (13) 

There is also another case of special interest, which corresponds to a contact angle of 90°. When 
this is the case, the bridge assumes the shape of a cylinder, and is the point where the profile changes 
from being concave to convex and visa-versa. It is useful to note that this case represents a singularity 
in the solution of eq. 6, as it means that eq. 4 equals infinity (i.e., the bridge profile is straight). 

There are multiple solutions to eq. 6 for a given contact line radius, but the solution which 
coincides with the smallest gap corresponds to that of the most stable bridge, where the effects of 
drainage is minimal [38]. However, when the dimensionless contact line radius, 𝑹𝑪∗ , is less than 1, the 
only solutions that exist correspond to potentially unstable bridges with gaps between the platens 
much larger than for bridges with larger contact line radii. Due to the intractability of the solution of 
eq. 6, the contact angle as a function of the normalised dimensionless gap was found numerically by 
using a bisection method. The result can be seen in Figure 7: 

 
Figure 7. Change in contact angle as a function of the normalised dimensionless gap. Each curve 
represents the result for a different dimensionless contact radius for the range of 1 to 3. 

The curves in Figure 7 have the shape of a generalised logistic curve, which has the form of eq. 
14 (in units of degrees). 𝜽 𝑵𝒉∗ = 𝑨𝑳 + 𝒅𝑨𝟏 + 𝑻𝒆 𝑮𝑹 𝑵𝒉∗ 𝑴 𝟏 𝑻⁄  (14) 

where 𝑨𝑳 is the lower asymptote, 𝒅𝑨 is the distance between the asymptotes, 𝑻 affects near which 
asymptote maximum growth occurs, 𝑮𝑹 is the growth rate and 𝑴 is the point of maximum growth. 
These variables were all found to be as functions of 𝑹𝑪∗   . 𝑮𝑹 is given in terms of a polynomial, and 𝑨𝑳  , 𝒅𝑨  , 𝑴, and 𝑻 can be given by Gompertz curves, the coefficients of which were found, using 
a standard curve fitting algorithm, to be: 

𝑨𝑳 𝑹𝑪∗ = 𝟐𝟎𝟓𝟔𝟖.𝟔𝟑𝒆 𝟎.𝟏𝟑𝟓𝒆 𝟓.𝟒𝟗𝟔𝑹𝑪 ∗ − 𝟐𝟎𝟑𝟕𝟐.𝟕𝟔 
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𝒅𝑨 𝑹𝑪∗ = −𝟐𝟕𝟓𝟕𝟏𝟗.𝟔𝟕𝒆 𝟎.𝟎𝟎𝟑𝟕𝟓𝒆 𝟑.𝟕𝟖𝟗𝑹𝑪 ∗ + 𝟐𝟕𝟓𝟓𝟎𝟗.𝟗𝟎 

𝑻 𝑹𝑪∗ = 𝟏𝟖𝟖𝟗𝟑.𝟔𝟒𝒆 𝟎.𝟎𝟎𝟎𝟔𝟑𝟖𝒆 𝟐.𝟑𝑹𝑪 ∗ − 𝟏𝟖𝟖𝟗𝟐.𝟔𝟒 (15) 

𝑮𝑹 𝑹𝑪∗ = 𝟐𝟎𝟎.𝟓𝟓𝟔𝑹𝑪∗𝟒 − 𝟗𝟔𝟕.𝟗𝟓𝟓𝑹𝑪∗𝟑 + 𝟏𝟕𝟓𝟔.𝟐𝟔𝟖𝑹𝑪∗𝟐 − 𝟏𝟒𝟏𝟗.𝟗𝟓𝟓𝑹𝑪∗ + 𝟒𝟑𝟔.𝟏𝟕𝟑 𝑹𝑪∗   𝟏.𝟑𝟎.𝟎𝟑𝟓𝟗𝑹𝑪∗𝟒 − 𝟎.𝟐𝟗𝟔𝑹𝑪∗𝟑 + 𝟎.𝟓𝟑𝟕𝑹𝑪∗𝟐 + 𝟎.𝟐𝟒𝟖𝑹𝑪∗ + 𝟑.𝟕𝟕𝟓 𝑹𝑪 ∗  𝟏.𝟑  

𝑴 𝑹𝑪∗ = 𝟒𝟑𝟏𝟔.𝟐𝟏𝟔𝒆 𝟎.𝟎𝟎𝟎𝟖𝟎𝟑𝒆 𝟐.𝟒𝟏𝟓𝑹𝑪 ∗ − 𝟒𝟑𝟏𝟓.𝟕𝟐𝟖 

The quality of the fit of the coefficients can be seen in Figure 8, where the coefficients of 
determination for each of the fits is 0.9987 or better. 

 
Figure 8. Comparison of the coefficients generated as a result of the fit of eq. 16 to the contact angle 
as a function of the normalised dimensionless gap data shown in Figure 7 for increasing 
nondimensional contact radii and the functions given by Equation 17. 

The results of substituting Equation 15 into Equation 14 are shown in Figure 9: 
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Figure 9. Comparison between the approximate numerical answer and the closed form solution given 
by Equation 14 for 𝑹𝑪∗  between 1 and 3. 

Above 𝑹𝑪∗ = 𝟏  , the results of Equation 14 can be seen to be in good agreement with the 
numerically obtained results, with coefficients of determination of 0.98 or greater. This means that 
they can be used as working equations when dealing with the effects of contact angle hysteresis. 
Because eqs. 15 converge to a single value as 𝑹𝑪∗  increases beyond 2.8, Equation 14 can be simplified 
to: 𝜽 𝑵𝒉∗ = 𝟐𝟎𝟎.𝟗𝟖 + −𝟐𝟏𝟎.𝟓𝟓𝟏 + 𝟏.𝟒𝟒𝟐𝒆 𝟓.𝟕𝟕𝟏 𝑵𝒉∗ 𝟎.𝟓𝟎𝟖 𝟎.𝟔𝟗𝟑 𝑹𝑪 ∗  𝟐.𝟖 (16) 

The geometry of a liquid bridge undergoing a change in height can now be calculated for the 
two circumstances, namely when the contact line slips and when it pins. The procedure for any 
subsequent calculations would be as follows: 

• State initial conditions 

• We need to know four things: gap, initial contact angle, contact line radius, and volume. 
• Gap is a design/experimental parameter and is known, equilibrium (and dynamic for later) 

contact angle is a fluid property and can be found easily beforehand. 
• The volume or the contact line radius needs to be measured. The other can be calculated using 

eqs 6 or 8, respectively. However, they only need to be measured once. The values can then be 
used throughout the calculation. 

• Change the gap 

• It is assumed that subsequent motion will be continuous and no relaxation towards 
equilibrium conditions is observed. 

• The change in geometry depends on the direction the upper platen is moved. 
• If it is moving upwards, initially, the receding contact angle will be lower than the equilibrium 

contact angle. Here, the contact line radius (given) will stay constant until the instantaneous 
contact angle (given by Equation 16) equals the receding contact angle. If the motion continues 
to increase, the contact angle stays constant and the contact line radius changes according to 
Equation 8. 

• Change the direction 
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• At this point, the contact angle equals the receding contact angle and the contact line radius is 
known. Decreasing the gap, the contact line radius will remain constant and the contact angle 
will increase, as in Equation 16, until it reaches the advancing contact angle. Decreasing the 
gap further will mean the contact angle stays at the advancing angle and the contact line radius 
changes. 

Using this procedure, the capillary forces can be found, as demonstrated in Figure 10 for two 
scenarios covering a wide range of contact angle hysteresis. 

 
Figure 10. Capillary force hysteresis effects for a typical liquid bridge undergoing sinusoidal motion 
(the nominal gap is 10 µm amplitude is 1 µm, 3 × 10−1 nL and the Bond number is 0.0022) Left: the 
advancing contact angle is 70° and the receding contact angle is 20°. Right: the advancing contact 
angle is 140° and the receding contact angle is 70°. 

The maximum relative error between the force as calculated using the toroidal approximation 
and that calculated numerically from the exact expression using the algorithm given in the Appendix, 
is 0.21% for the data shown in Figure 10(left) and 1.3% in Figure 10(right). 

Significantly, the data in Figure 10(left) (that is, the 120 data points used to describe one cycle 
here) took c.a. 880 s to generate using MATLAB R2018a on a HP Omen Laptop with Intel® Core™ i7-
9750H CPU @ 2.60GHz, with 6 Cores, 12 Logical Processors and 16 GB of RAM. The equivalent data 
generated on the same system using Equation 14 took just c.a. 0.12 s. This demonstrates the significant 
speed-up the use of these closed-form expressions can give the user as compared to having to solve 
the exact equations numerically. 

It can be clearly seen that the form of these curves is very similar to those measured 
experimentally by De Souza et al. [26] and by Shi et al. [27]. Direct comparison is not possible between 
these studies and the theory proposed here as those studies used asymmetric bridges with large bond 
numbers and large extensions/velocities in which viscous forces and bridge collapse is significant and 
not of interest here. For the case shown in Figure 10, the contact line radius and contact angle, as 
calculated using the toroidal approximation, vary as a function of gap and are as shown in Figures 
11 and 12: 
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Figure 11. Variation of contact angle (left) and contact line radius (right) as a function of gap for the 
bridge detailed in Figure 10 (left). 

This relationship may be better appreciated as a function of time: 

 
Figure 12. Variation of contact angle (left) and contact line radius (right) as a function of time for the 
scenario demonstrated in Figure 10 (left). In this case, a frequency of 10 Hz is arbitrarily assumed. 

2.3. Linearization and Applicability to Squeeze Flow Rheometry 

For this theory to be useful for squeeze flow rheometry, it is important that it is consistent with 
the fluid flow theory. In the fluid flow theory, it is assumed that the fluid has cylindrical geometry, 
the flow is purely radial, and that the no-slip condition applies [30]. These assumptions may seem to 
be at odds with the theory presented here. The reason for this is that, here, it is stated that the 
boundary is curved due to surface tension, precluding cylindrical geometry, and that the contact line 
can move, which will cause infinite shear stresses at the interface if the no-slip condition is applied 
and the flow is purely radial. This is because dealing with the exact boundary conditions in squeeze 
flow rheometry is not a trivial matter. This discrepancy is negated by ensuring that the lubrication 
approximation is applicable. The lubrication approximation states that if the fluid gap is much 
smaller than its radius, perturbations in the radial flow caused by edge effects can be neglected [17]. 
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This means the individual force contributions from the surface tension and viscous flow can be 
treated separately and summed together [30]. 

One way to maintain consistency is to ensure the volume of liquid under consideration in the 
two theories is the same. To do this, the radius of fluid used in the fluid flow theory must be the root-
mean-square of the radius of the bridge given in Equation 3, or: 

𝑹𝑴𝑺 = 𝟏𝒉 𝒓 𝒛 𝟐𝒅𝒛𝒉
𝟎  (17) 

To see why this is consistent, recall that the volume of the bridge is defined as: 

𝑽 = 𝝅𝒓 𝒛 𝟐𝒅𝒛𝒉
𝟎  (18) 

And the volume of a cylinder with diameter 𝑹𝑪𝒚𝒍 and height 𝒉 is defined as: 𝑽 = 𝝅𝑹𝑪𝒚𝒍𝟐 𝒉 (19) 

If the definition of the root-mean-square radius, 𝑹𝑴𝑺  , from Equation 17 is substituted into 
Equation 19 as the radius of the cylinder so that 𝑹𝑪𝒚𝒍 = 𝑹𝑴𝑺  , it can be seen that Equation 18 and 
Equation 19 are in fact the same (see Equation 10). 

𝑽 =  𝝅 𝟏𝒉 𝒓 𝒛 𝟐𝒅𝒛𝒉
𝟎

𝟐 𝒉 = 𝝅𝒓 𝒛 𝟐𝒅𝒛𝒉
𝟎  (20) 

Therefore, matching the 𝑹𝑴𝑺 value for the bridge radius does ensure that the volume of liquid 
used in both theories are consistent. 

It was shown in [30] that if the capillary force can be described as a linear function then the 
equations of motion for a squeeze flow rheometer can be found. To linearise Equation 9, the change 
in the gap, 𝒉  , must be sufficiently small as to not cause the contact line radius to slip. While the 
capillary force is still non-linear, if the change in gap is small enough, this nonlinearity will be small. 
This means the capillary force can be approximated by the linear relationship given in Equation 21, 
as demonstrated in Figure 13. 𝑭𝑪 ≅ 𝑲𝑪𝒂𝒑𝒙 + 𝝌𝑪𝒂𝒑 (21) 

The coefficients used in Equation 21 are: 

𝑲𝑪𝒂𝒑 = 𝒅 𝑭𝑪 𝒉𝒅𝒉  (22) 

And:  𝝌𝑪𝒂𝒑 = 𝑭𝑪 𝒉 − 𝑲𝑪𝒂𝒑𝒉 (23) 

where 𝒉  is the mean or nominal bridge gap. While these expressions are difficult to solve 
analytically, they are easily solved numerically. For instance, for the data shown in Figure 13, 𝑲𝑪𝒂𝒑 
= 179.4 N/m and 𝝌𝑪𝒂𝒑 = -0.0017 N. The maximum relative error between the linear function given by 
Equation 21 and the data shown in Figure 13 is 0.11%. Therefore, Equation 21 can be used to 
determine the correction to the squeeze force measured during rheometry due to capillary forces and 
to check that these forces are linear, facilitating analysis of the rheometry data. 
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Figure 13. Linearised capillary force. Note that, as an example, the amplitude has been here reduced 
to 25 nm and, as a result, the contact radius is not able to slip, hence the capillary force is essentially 
linear. 

3. Conclusions 

In this work, the geometry of a pendular liquid capillary bridge between two flat parallel platens 
has been determined, taking into account the contact angle hysteresis exhibited by the three-phase 
contact line of the bridge as the height of the bridge varies. The solution was based on the toroidal 
approximation, which is the assumption that the profile of the bridge is well approximated by a 
circular arc. This approximation has been extended for all contact angles from 0-180° for liquid 
bridges characterised by low Bond numbers. A closed form expression has been developed that 
allows for the fast approximation of the contact angle and contact radius at any bridge height without 
the need for significant experimentation or numerical analysis. All that is needed to be known before 
analysis is the bridge volume, the bridge height and the advancing and receding contact angles. This 
means that the effects of contact angle hysteresis, such as the resultant nonlinear capillary forces, can 
be calculated very conveniently whilst still maintaining accuracy. The inconsistency between the 
complex geometry of the liquid bridge and the simple geometry assumed during micro-squeeze flow 
rheology has been resolved, and the techniques for minimising the nonlinearities in the capillary 
forces during rheometry have been determined. The validity of the theory has been shown through 
comparison with the numerical solution of the exact governing equations. 
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Appendix A 

The numerical scheme used in this paper to check the validity of the toroidal approximation, as seen 
in Figure 3, is similar to that used in [6]. As the boundary conditions were modified to be consistent 
with the flat-on-flat geometry, the theory is re-encapsulated here. First, the axisymmetric Young–
Laplace equation is non-dimensionalised (capitalised letters denote nondimensionalised terms) by 
dividing all the relevant geometric distances by the characteristic length given by Equation A.1 and 
rephrased into the form as given in Equation A.2. 
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𝒙𝑪 = √𝑽𝟑  (A1) 

𝜟𝑷𝒙𝑪𝜸𝑳𝑽 = 𝟐𝑯∗ = 𝒅𝟐𝑹𝒅𝒁𝟐𝟏 + 𝒅𝑹𝒅𝒁𝟐 𝟑𝟐 − 𝟏
𝑹 𝟏 + 𝒅𝑹𝒅𝒁𝟐 𝟏𝟐 (A2) 

where 𝑯∗  is twice the dimensionless mean curvature. The solution of this equation gives the profile 
of the liquid bridge, which can be approximated by a truncated Taylor series: 

𝑹𝒊 𝟏 ≅ 𝑹𝒊 + 𝒁𝒊 𝟏 − 𝒁𝒊 𝒅𝑹𝒅𝒁𝒊 + 𝟏𝟐 (𝒁𝒊 𝟏 − 𝒁𝒊)𝟐 𝒅𝟐𝑹𝒅𝒁𝟐𝒊 , 𝒊 = 𝟎,𝟏,𝟐, … ,𝒏 (A3) 

Eq. A.2 can be integrated to give: 𝑹
𝟏 + 𝒅𝑹𝒅𝒁𝟐 𝟏𝟐 + 𝑯∗𝑹𝟐 = 𝑪 

(A4) 

where: 𝑪 = 𝑹𝑪∗ 𝒔𝒊𝒏 𝜽 + 𝑯∗𝑹𝑪∗ 𝟐 (A5) 

where 𝑹𝑪∗  is the dimensionless contact radius. Therefore, the first and second differential, as used in 
Equation A.3, can be given as: 

𝒅𝑹𝒅𝒁𝒊 = 𝑹𝒊𝑪 − 𝑯∗𝑹𝒊𝟐 𝟐 − 𝟏 (A6) 

𝒅𝟐𝑹𝒅𝒁𝟐𝒊 = 𝟏 + 𝒅𝑹𝒅𝒁𝒊𝟐𝑹𝒊 + 𝟐𝑯∗ 𝟏 + 𝒅𝑹𝒅𝒁𝒊𝟐 𝟑𝟐
 (A7) 

Given the following boundary conditions (𝑹𝒊 𝟎,𝑹𝒊 𝒏)  , Eq. A.3 can be solved: 

𝑹𝟎 = 𝑪 𝒊𝒇 𝑯∗ = 𝟎−𝟏 + √𝟏 + 𝟒𝑯∗𝑪𝟐𝑯∗ 𝒊𝒇 𝑯∗ ≠ 𝟎 (A8) 

𝑹𝒏 = 𝑹𝑪∗  (A9) 𝒅𝑹𝒅𝒁𝒏 = 𝒄𝒐𝒕 𝜽 (A10) 

However, in the solution of Equation A.3, the curvature and contact line radius/angle are 
unknown. Here, a bisection method was used to find the correct geometry. For a maximum and 
minimum chosen curvature, the volume of the bridge is calculated using the geometry defined by 
Equation A.3 for a given contact line radius or contact angle. The curvature range is then bisected, 
and, in each iteration, the calculated volume is compared to the known correct volume until a 
satisfactory convergence is reached. This in turn defines the gap between the platens. Therefore, if 
the procedure is repeated for each contact line radius, we obtain the geometry of the liquid bridge for 
a range of gaps (see Figure A1). 
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(a) (b)  

Figure A1. Example of the geometry of a typical liquid bridge as it varies with the bridge gap, as 
defined by Equation A.3. (a) The contact angle is constant (60°); (b) the contact angle varies (between 
5° and 85°). The volume of the bridge is 𝝅 × 𝟏𝟎 𝟏 nL and the Bond number is 0.0022. 

Given the geometry for a range of bridge gaps, the curvature and neck radius are known, 
allowing for the determination of the capillary force through the solution of Equation 2 (see Figure 
A2). 

(a) (b)  

Figure A2. How the capillary force varies with the gap as given by Equation 2 for the geometry shown 
in Figure A1. (a) The contact angle is constant; (b) the contact angle varies. 

References 

1. Fowkes, F.M. Calculation of Work of Adhesion by Pair Potential Summatio. J. Colloid Int Sci. 1968, 28, 493–
505. 

2. Allen, K.W. “At Forty Cometh Understanding”: A Review of Some Basics of Adhesion over the Past Four 
Decades. Int. J. Adhes. Adhes. 2003, 23, 87–93. 

3. Ennis, B.J.; Li, J.; Tardos, G.I.; Pfeffer, R. The Influence of Viscosity on the Strength of an Axially Strained 
Pendular Liquid Bridge. Chem. Eng. Sci. 1990, 45, 3071–3088. 

4. Simons, S.J.R.; Seville, J.P.K.; Adams, M.J. An Analysis of the Rupture Energy of Pendular Liquid Bridges. 
Chem. Eng. Sci. 1994, 49, 2331–2339. 



Colloids Interfaces 2020, 4, 13 16 of 17 

 

5. Rabinovich, Y.I.; Esayanur, M.S.; Moudgil, B.M. Capillary Forces between Two Spheres with a fixed 
Volume Liquid Bridge.: Theory and Experiment. Langmuir 2005, 21, 10992–10997. 

6. Lian, G.; Thornton, C.; Adams, M.J. A Theoretical Study of the Liquid Bridge Forces between Two Rigid 
Spherical Bodies. J. Colloid and Int. Sci. 1993, 161,138-147. 

7. Willett, C.D.; Adams, M.J.; Johnson, S.A.; Seville, J.P.K. Capillary Bridges between Two Spherical Bodies. 
Langmuir 2000, 16, 9396–9405. 

8. Pepin, X.; Rossetti, D.; Iveson, S.M.; Simons, S.J. Modelling the Evolution and Rupture of Pendular Liquid 
Bridges in the Presence of Large Wetting Hysteresis. J. Colloid and Int. Sci. 2000, 232, 289–297. 

9. De Bisschop, F.R.E.; Rigole, W.J.L. A Physical Model for Liquid Capillary Bridges between Adsorptive Solid 
Spheres: The Nodoid of Plateau. J. Colloid Int. Sci. 1981, 88, 117–128. 

10. Orr, F.M.; Scriven, L.E.; Rivas, A.P. Pendular Rings between Solids: Meniscus Properties and Capillary 
Force. J. Fluid Mech. 1975, 67, 723–742. 

11. de Boer, M.P.; de Boer, P.C.T. Thermodynamics of Capillary Adhesion between Rough Surfaces. J. Colloid 
Int. Sci. 2007, 311, 171–185. 

12. Lambert, P.; Delchambre, A. Parameters Ruling Capillary Forces at the Submillimetric Scale. Langmuir 2005, 
21, 9537–9543. 

13. Mastrangelo, C.H.; Hsu, C.H. Mechanical Stability and Adhesion of Microstructures under Capillary 
Forces: I. Basic Theory. 1993, 2, 33–43. 

14. Mastrangelo, C.H.; Hsu, C.H. Mechanical Stability and Adhesion of Microstructures under Capillary 
Forces: II. Basic Theory 1993, 2, 44–55. 

15. Mate, C.M. Application of Disjoining and Capillary Pressure to Liquid Lubricant Films in Magnetic 
Recording. J. Appl. Phys. 1992, 72, 3084–3090. 

16. Pfohl, T.; Mugele, F.; Seemann, R.; Herminghaus, S. Trends in Microfluidics with Complex Fluids. Chem. 
Phys. Chem. 2003, 4, 1291–1298. 

17. Bell, D.; Binding, D.M.; Walters, K. The Oscillatory Squeeze Flow Rheometer - Comprehensive Theory and 
a New Experimental Facility. Rheol. Acta 2005, 46, 111–121. 

18. Debbaut, B.; Thomas, K. Simulation and Analysis of Oscillatory Squeeze Flow. J. Non-Newton. Fluid Mech. 
2004, 124, 77–91. 

19. Kwok, P.Y.; Weinberg, M.S.; Breuer, K.S. Fluid Effects in Vibrating Micromachined Structures. J. 
Microelectromechanical Sys. 2005, 14, 770–781. 

20. Cheneler, D.; Bowen, J.; Ward, M.C.; Adams, M.J. Principles of a micro squeeze flow rheometer for the 
analysis of extremely small volumes of liquid. Journal of Micromechanics and Microengineering. 2011, 21, 
045030. 

21. Cheneler, D. Analysis of a Coupled-Mass Microrheometer. Advances in Microfluidics. 2012, 55. 
22. Yan, Y.; Zhang, Z.; Cheneler, D.; Stokes, J.R.; Adams, M.J. The influence of flow confinement on the 

rheological properties of complex fluids. Rheol. Acta 2010, 49, 255–266. 
23. Chen, T.-Y.; Tsamopoulos, J.A.; Good, R.J. Capillary Bridges between Parallel and Non-Parallel Surfaces 

and Their Stability. J. Colloid Int. Sci. 1992, 151, 49–69. 
24. Boucher, E.A.; Evans, M.J.B.; McGarry, S. Capillary Phenomena XX. Fluid Bridges between Horizontal 

Solid Plates in a Gravitation Field. J. Colloid Int. Sci. 1982, 89, 154–163. 
25. Concus, P.; Finn, R. Discontinuous Behaviour of Liquids between Parallel and Tilted Plates. Phys. Fluids 

1998, 10, 39–44. 
26. De Souza, E.J.; Gao, L.; McCarthy, T.J.; Arzt, E.; Crosby, A.J. Effect of contact angle hysteresis on the 

measurement of capillary forces. Langmuir 2008, 24, 1391–1396. 
27. Shi, Z.; Zhang, Y.; Liu, M.; Hanaor, D.A.; Gan, Y. Dynamic contact angle hysteresis in liquid bridges. Colloids 

Surf. A: Physicochem. Eng. Asp. 2018, 555, 365–371. 
28. Reynolds, O. On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower’s Experiments, 

Including an Experimental Determination of the Viscosity of Olive Oil. Philos. Trans. R. Soc. Lond. 1886, 177, 
157–234. 

29. Borkar, A.; Tsamopoulos, J. Boundary-Layer Analysis of the Dynamics of Axisymmetric Capillary Bridges. 
Phys. Fluids A 1991, 3, 2866–2874. 

30. Cheneler, D.; Ward, M. C.; Adams, M. J.; Zhang, Z. Measurement of Dynamic Properties of Small Volumes 
of Fluid Using MEMS. Sens. Actuators B: Chem. 2008, 130, 701–706. 



Colloids Interfaces 2020, 4, 13 17 of 17 

 

31. Neumann, A.W.; David, R.; Zuo, Y. Applied Surface Thermodynamics (Surfactant science); CRC Press: New 
York, NY, USA, 1996, vol. 63. 

32. Van Honschoten, J.W.; Tas, N.R.; Elwenspoek, M. The Profile of a Capillary Liquid Bridge Between Solid 
Surfaces. Am. J. Phys. 2010, 78, 3, 277–286. 

33. Fisher, R.A. On the Capillary Forces in an Ideal Soil; Correction of Formulae given by WB Haines. J. Agric. 
Sci. 1926, 19, 492–505. 

34. Megias-Alguacil, D.; Gauckler, L.J. Accuracy of the toroidal approximation for the calculus of concave and 
convex liquid bridges between particles. Granular Matter. 2011, 13, 487–492. 

35. Willett, C.D.; Johnson, S.A.; Adams, M.J.; Seville, J.P.K. Pendular Capillary Bridges. In Handbook of Powder 
Technology: Granulation, Salman, A.D., Hounslow, M.J., Seville, J.P.K., Eds.; Elsevier B.V.: Amsterdam, 
Netherlands, 2007, Volume. 2, Chap. 28, pp. 1317–1351, ISBN: 978-0-444-51871-2 

36. Blake, T.D. The Physics of Moving Wetting Lines. J. Colloid Int. Sci. 2006, 199, 1–13. 
37. Willett, C.D.; Adams, M.J.; Johnson, S.A.; Seville, J.P.K. Effects of Wetting Hysteresis on Pendular Liquid 

Bridges between Rigid Spheres. Powder Tech. 2003, 130, 63–69. 
38. Adams, M.J.; Johnson, S.A.; Seville, J.P.; Willett, C.D. Mapping the Influence of Gravity on Pendular Liquid 

Bridges between Rigid Spheres. Langmuir 2002, 18, 6180–6184. 
 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


