12 research outputs found

    Blinatumomab in pediatric relapsed/refractory B-cell acute lymphoblastic leukemia: RIALTO expanded access study final analysis

    Full text link
    The safety and efficacy of blinatumomab, a CD3/CD19-directed bispecific molecule, were examined in an open-label, single-arm, expanded access study (RIALTO). Children (>28 days and <18 years) with CD19+ relapsed/refractory B-cell precursor acute lymphoblastic leukemia (R/R B-ALL) received up to 5 cycles of blinatumomab by continuous infusion (cycle: 4 weeks on/2 weeks off). The primary end point was incidence of adverse events. Secondary end points included complete response (CR) and measurable residual disease (MRD) response within the first 2 cycles and relapse-free survival (RFS), overall survival (OS), and allogeneic hematopoietic stem cell transplant (alloHSCT) after treatment. At final data cutoff (10 January 2020), 110 patients were enrolled (median age, 8.5 years; 88% had ≄5% baseline blasts). A low incidence of grade 3 or 4 cytokine release syndrome (n = 2; 1.8%) and neurologic events (n = 4; 3.6%) was reported; no blinatumomab-related fatal adverse events were recorded. The probability of response was not affected by the presence of cytogenetic/molecular abnormalities. Median OS was 14.6 months (95% confidence interval [CI]: 11.0-not estimable) and was significantly better for MRD responders vs MRD nonresponders (not estimable vs 9.3; hazard ratio, 0.18; 95% CI: 0.08-0.39). Of patients achieving CR after 2 cycles, 73.5% (95% CI: 61.4%-83.5%) proceeded to alloHSCT. One-year OS probability was higher for patients who received alloHSCT vs without alloHSCT after blinatumomab (87% vs 29%). These findings support the use of blinatumomab as a safe and efficacious treatment of pediatric R/R B-ALL. This trial was registered at www.clinicaltrials.gov as #NCT02187354

    Loss of Drp1 function alters OPA1 processing and changes mitochondrial membrane organization

    No full text
    RNAi mediated loss of Drp1 function changes mitochondrial morphology in cultured HeLa and HUVEC cells by shifting the balance of mitochondrial fission and fusion towards unopposed fusion. Over time, inhibition of Drp1 expression results in the formation of a highly branched mitochondrial network along with “bulge”-like structures. These changes in mitochondrial morphology are accompanied by a reduction in levels of Mitofusin 1 (Mfn1) and 2 (Mfn2) and a modified proteolytic processing of OPA1 isoforms, resulting in the inhibition of cell proliferation. In addition, our data imply that bulge formation is driven by Mfn1 action along with particular proteolytic short-OPA1 (s-OPA1) variants: Loss of Mfn2 in the absence of Drp1 results in an increase of Mfn1 levels along with processed s-OPA1-isoforms, thereby enhancing continuous “fusion” and bulge formation. Moreover, bulge formation might reflect s-OPA1 mitochondrial membrane remodeling activity, resulting in the compartmentalization of cytochrome c deposits. The proteins Yme1L and PHB2 appeared not associated with the observed enhanced OPA1 proteolysis upon RNAi of Drp1, suggesting the existence of other OPA1 processing controlling proteins. Taken together, Drp1 appears to affect the activity of the mitochondrial fusion machinery by unbalancing the protein levels of mitofusins and OPA1

    Other (Non-CNS/Testicular) Extramedullary Localizations of Childhood Relapsed Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma-A Report from the ALL-REZ Study Group

    No full text
    Children with other extramedullary relapse of acute lymphoblastic leukemia are currently poorly characterized. We aim to assess the prevalence and the clinical, therapeutic and prognostic features of extramedullary localizations other than central nervous system or testis in children with relapse of acute lymphoblastic leukemia (ALL) and lymphoblastic lymphoma (LBL) treated on a relapsed ALL protocol. PATIENTS AND METHODS Patients with relapse of ALL and LBL, treated according to the multicentric ALL-REZ BFM trials between 1983 and 2015, were analyzed for other extramedullary relapse (OEMR) of the disease regarding clinical features, treatment and outcome. Local treatment/irradiation has been recommended on an individual basis and performed only in a minority of patients. RESULTS A total of 132 out of 2323 (5.6%) patients with ALL relapse presented with an OEMR (combined bone marrow relapse n = 78; isolated extramedullary relapse n = 54). Compared to the non-OEMR group, patients with OEMR had a higher rate of T-immunophenotype (p < 0.001), a higher rate of LBL (p < 0.001) and a significantly different distribution of time to relapse, i.e., more very early and late relapses compared to the non-OEMR group (p = 0.01). Ten-year probabilities of event-free survival (pEFS) and overall survival (pOS) in non-OEMR vs. OEMR were 0.38 ± 0.01 and 0.32 ± 0.04 (p = 0.0204) vs. 0.45 ± 0.01 and 0.37 ± 0.04 (p = 0.0112), respectively. OEMRs have been classified into five subgroups according to the main affected compartment: lymphatic organs (n = 32, 10y-pEFS 0.50 ± 0.09), mediastinum (n = 35, 10y-pEFS 0.11 ± 0.05), bone (n = 12, 0.17 ± 0.11), skin and glands (n = 21, 0.32 ± 0.11) and other localizations (n = 32, 0.41 ± 0.09). Patients with OEMR and T-lineage ALL/LBL showed a significantly worse 10y-pEFS (0.15 ± 0.04) than those with B-Precursor-ALL (0.49 ± 0.06, p < 0.001). Stratified into standard risk (SR) and high risk (HR) groups, pEFS and pOS of OEMR subgroups were in the expected range whereas the mediastinal subgroup had a significantly worse outcome. Subsequent relapses involved more frequently the bone marrow (58.4%) than isolated extramedullary compartments (41.7%). In multivariate Cox regression, OEMR confers an independent prognostic factor for inferior pEFS and pOS. CONCLUSION OEMR is adversely related to prognosis. However, the established risk classification can be applied for all subgroups except mediastinal relapses requiring treatment intensification. Generally, isolated OEMR of T-cell-origin needs an intensified treatment including allogeneic stem cell transplantation (HSCT) as a curative approach independent from time to relapse. Local therapy such as surgery and irradiation may be of benefit in selected cases. The indication needs to be clarified in further investigations

    Improving Stratification for Children With Late Bone Marrow B-Cell Acute Lymphoblastic Leukemia Relapses With Refined Response Classification and Integration of Genetics

    Full text link
    PURPOSE Minimal residual disease (MRD) helps to accurately assess when children with late bone marrow relapses of B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) will benefit from allogeneic hematopoietic stem-cell transplantation (allo-HSCT). More detailed dissection of MRD response heterogeneity and the specific genetic aberrations could improve current practice. PATIENTS AND METHODS MRD was assessed after induction treatment and at different times during relapse treatment until allo-HSCT (indicated in poor responders to induction; MRD ≄ 10−3^{-3}) for patients being treated for late BCP-ALL bone marrow relapses (n = 413; median follow-up, 9.4 years) in the ALL-REZ BFM 2002 trial/registry (ClinicalTrials.gov identifier: NCT00114348). RESULTS Patients with both good (MRD < 10−3^{-3}) and poor responses to induction treatment reached excellent event-free survival (EFS; 72% v 65%) and overall survival (OS; 82% v 74%). Patients with MRD of 10−2^{-2} or greater after induction had reduced EFS (56%), and their MRD persisted until allo-HSCT more frequently than it did in patients with MRD of 10−3^{-3} or greater to less than 10−2^{-2} (P = .037). Patients with 25% or more leukemic blasts after induction (early nonresponders) had the poorest prognosis (EFS, 22%). Interestingly, patients with MRD of 10−3^{-3} or greater before allo-HSCT (late nonresponders) still had an EFS of 50% and OS of 63%, which in principle justifies allo-HSCT in these patients. From a panel of selected candidate genes, TP53 alterations (frequency, 8%) were the only genetic alteration with independent prognostic value in any MRD-based response subgroup. CONCLUSION After induction treatment, MRD-based treatment stratification resulted in excellent survival in patients with late relapsed BCP-ALL. Prognosis could be further improved in very poor responders by intensifying treatment directly after induction. TP53 alterations can be defined as a novel genetic high-risk marker in all MRD response groups in late relapsed BCP-ALL. Here we identified early and late nonresponders to be considered as events in future trials

    Durable remissions in TCF3-HLF positive acute lymphoblastic leukemia with blinatumomab and stem cell transplantation

    Get PDF
    WOS: 000469839300005PubMed ID: 30765470TCF3-HLF-positive leukemia represents a rare subtypeof childhood acute lymphoblastic leukemia (ALL), characterized by a high rate of treatment failure despite treatment intensification and allogeneic stem cell transplantation (SCT). Given the high and homogeneous expressionof CD19 on blast cells of this leukemia subtype, thesepatients may benefit from CD19-directed immunotherapy. Here, we report the experience on nineTCF3-HLF-positive ALL patients, most of whom weretreated early in first consolidation with blinatumomab asa bridge to SCT between 2015 and 2018. Treatment withblinatumomab was generally well tolerated; reversibleneurotoxicity was observed in two patients. All ninepatients achieved molecular remission after blinatumomab treatment; seven underwent SCT and for onepatient SCT is planned. Median follow up after start ofblinatumomab treatment was 342 days, and four patientsremain in molecular remission after a follow up of 1317,1292, 1245, and 342 days, respectively. Three patientsdied because of infectious complications not directlyrelated to blinatumomab, because they occurred eitherafter SCT or after emergence of a CD19-negativeleukemia clone. In the light of these encouraging observations, CD19-directed immunotherapy should be considered early after induction chemotherapy inTCF3-HLF-positive ALL children and patients’ outcomemonitored systematically by study groups

    Risk factors and outcomes in children with high-risk B-cell precursor and T-cell relapsed acute lymphoblastic leukaemia: combined analysis of ALLR3 and ALL-REZ BFM 2002 clinical trials.

    Get PDF
    From PubMed via Jisc Publications RouterHistory: received 2020-12-31, revised 2021-03-01, accepted 2021-03-15Publication status: aheadofprintOutcomes of children with high-risk (HR) relapsed acute lymphoblastic leukaemia (ALL) (N = 393), recruited to ALLR3 and ALL-REZ BFM 2002 trials, were analysed. Minimal residual disease (MRD) was assessed after induction and at predetermined time points until haematopoietic stem cell transplantation (SCT). Genetic analyses included karyotype, copy-number alterations and mutation analyses. Ten-year survivals were analysed using Kaplan-Meier and Cox models for multivariable analyses. Outcomes of patients were comparable in ALLR3 and ALL-REZ BFM 2002. The event-free survival of B-cell precursor (BCP) and T-cell ALL (T-ALL) was 22.6% and 26.2% (P = 0.94), respectively, and the overall survival (OS) was 32.6% and 28.2% (P = 0.11), respectively. Induction failures (38%) were associated with deletions of NR3C1 (P = 0.002) and BTG1 (P = 0.03) in BCP-ALL. The disease-free survival (DFS) and OS in patients with good vs poor MRD responses were 57.4% vs 22.6% (P < 0.0001) and 57.8% vs 32.0% (P = 0.0004), respectively. For BCP- and T-ALL, the post-SCT DFS and OS were 42.1% and 56.8% (P = 0.26) and 51.6% and 55.4% (P = 0.67), respectively. The cumulative incidences of post-SCT relapse for BCP- and T-ALL were 36.9% and 17.8% (P = 0.012) and of death were 10.7% and 25.5% (P = 0.013), respectively. Determinants of outcomes after SCT were acute graft versus host disease, pre-SCT MRD (≄10 ), HR cytogenetics and TP53 alterations in BCP-ALL. Improvements in outcomes for HR ALL relapses require novel compounds in induction therapy to improve remission rates and immune targeted therapy after induction to maintain remission after SCT. ALLR3: NCT00967057; ALL REZ-BFM 2002: NCT00114348. [Abstract copyright: Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.

    A phase 1 study of inotuzumab ozogamicin in pediatric relapsed/refractory acute lymphoblastic leukemia (ITCC-059 study)

    No full text
    This phase 1 study investigated the recommended phase 2 dose (RP2D) of inotuzumab ozogamicin (InO), a CD22-directed antibody-drug conjugate, in pediatric patients with multiple relapsed/refractory (R/R) CD22+ acute lymphoblastic leukemia (ALL). Patients (age ≄1 year or <18 years) received 3 doses of InO (days 1, 8, and 15) per course. Dose escalation was based on dose-limiting toxicities (DLTs) during course 1. Dose level 1 (DL1) was 1.4 mg/m2 (0.6, 0.4, 0.4 mg/m2) and DL2 was 1.8 mg/m2 (0.8, 0.5, 0.5 mg/m2). Secondary end points included safety, antileukemic activity, and pharmacokinetics. Twenty-five patients (23 evaluable for DLTs) were enrolled. In course 1, the first cohort had 1 of 6 (DL1) and 2 of 5 (DL2) patients who experienced DLTs; subsequent review considered DL2 DLTs to be non–dose-limiting. Dose was de-escalated to DL1 while awaiting protocol amendment to re-evaluate DL2 in a second cohort, in which 0 of 6 (DL1) and 1 of 6 (DL2) patients had a DLT. Twenty-three patients experienced grade 3 to 4 adverse events; hepatic sinusoidal obstruction syndrome was reported in 2 patients after subsequent chemotherapy. Overall response rate after course 1 was 80% (95% confidence interval [CI], 59% to 93%) (20 of 25 patients; DL1: 75% [95% CI, 43% to 95%], DL2: 85% [95% CI, 55% to 98%]). Of the responders, 84% (95% CI, 60% to 97%) achieved minimal residual disease (MRD)-negative complete response, and 12-month overall survival was 40% (95% CI, 25% to 66%). Nine patients received hematopoietic stem cell transplantation or chimeric antigen receptor T cells after InO. InO median maximum concentrations were comparable to simulated adult concentrations. InO was well tolerated, demonstrating antileukemic activity in heavily pretreated children with CD22+ R/R ALL. RP2D was established as 1.8 mg/m2 per course, as in adults. This trial was registered at https://www.clinicaltrialsregister.eu as EUDRA-CT 2016-000227-71. Key Points: ‱ The recommended phase 2 dose of InO for pediatric patients with ALL was established at 1.8 mg/m2 per course. ‱ Of the patients with multiple R/R ALL, 85% reached CR after 1 course of single-agent InO at the RP2D, 100% of whom had MRD negativity
    corecore