74 research outputs found

    Influence of V5/6-His Tag on the Properties of Gap Junction Channels Composed of Connexin43, Connexin40 or Connexin45

    Get PDF
    HeLa cells expressing wild-type connexin43, connexin40 or connexin45 and connexins fused with a V5/6-His tag to the carboxyl terminus (CT) domain (Cx43-tag, Cx40-tag, Cx45-tag) were used to study connexin expression and the electrical properties of gap junction channels. Immunoblots and immunolabeling indicated that tagged connexins are synthesized and targeted to gap junctions in a similar manner to their wild-type counterparts. Voltage-clamp experiments on cell pairs revealed that tagged connexins form functional channels. Comparison of multichannel and single-channel conductances indicates that tagging reduces the number of operational channels, implying interference with hemichannel trafficking, docking and/or channel opening. Tagging provoked connexin-specific effects on multichannel and single-channel properties. The Cx43-tag was most affected and the Cx45-tag, least. The modifications included (1) Vj-sensitive gating of Ij (Vj, gap junction voltage; Ij, gap junction current), (2) contribution and (3) kinetics of Ij deactivation and (4) single-channel conductance. The first three reflect alterations of fast Vj gating. Hence, they may be caused by structural and/or electrical changes on the CT that interact with domains of the amino terminus and cytoplasmic loop. The fourth reflects alterations of the ion-conducting pathway. Conceivably, mutations at sites remote from the channel pore, e.g., 6-His-tagged CT, affect protein conformation and thus modify channel properties indirectly. Hence, V5/6-His tagging of connexins is a useful tool for expression studies in vivo. However, it should not be ignored that it introduces connexin-dependent changes in both expression level and electrophysiological properties

    Dysregulation of MicroRNA-34a Expression in Head and Neck Squamous Cell Carcinoma Promotes Tumor Growth and Tumor Angiogenesis

    Get PDF
    MicroRNAs (miRs) are small non-coding RNAs that play an important role in cancer development where they can act as oncogenes or as tumor-suppressors. miR-34a is a tumor-suppressor that is frequently downregulated in a number of tumor types. However, little is known about the role of miR-34a in head and neck squamous cell carcinoma (HNSCC).miR-34a expression in tumor samples, HNSCC cell lines and endothelial cells was examined by real time PCR. Lipofectamine-2000 was used to transfect miR-34a in HNSCC cell lines and human endothelial cells. Cell-proliferation, migration and clonogenic survival was examined by MTT, Xcelligence system, scratch assay and colony formation assay. miR-34a effect on tumor growth and tumor angiogenesis was examined by in vivo SCID mouse xenograft model. Our results demonstrate that miR-34a is significantly downregulated in HNSCC tumors and cell lines. Ectopic expression of miR-34a in HNSCC cell lines significantly inhibited tumor cell proliferation, colony formation and migration. miR-34a overexpression also markedly downregulated E2F3 and survivin levels. Rescue experiments using microRNA resistant E2F3 isoforms suggest that miR-34a-mediated inhibition of cell proliferation and colony formation is predominantly mediated by E2F3a isoform. In addition, tumor samples from HNSCC patients showed an inverse relationship between miR-34a and survivin as well as miR-34a and E2F3 levels. Overexpression of E2F3a completely rescued survivin expression in miR-34a expressing cells, thereby suggesting that miR-34a may be regulating survivin expression via E2F3a. Ectopic expression of miR-34a also significantly inhibited tumor growth and tumor angiogenesis in a SCID mouse xenograft model. Interestingly, miR-34a inhibited tumor angiogenesis by blocking VEGF production by tumor cells as well as directly inhibiting endothelial cell functions.Taken together, these findings suggest that dysregulation of miR-34a expression is common in HNSCC and modulation of miR34a activity might represent a novel therapeutic strategy for the treatment of HNSCC

    The Dopamine D3 Receptor Knockout Mouse Mimics Aging-Related Changes in Autonomic Function and Cardiac Fibrosis

    Get PDF
    Blood pressure increases with age, and dysfunction of the dopamine D3 receptor has been implicated in the pathogenesis of hypertension. To evaluate the role of the D3 receptor in aging-related hypertension, we assessed cardiac structure and function in differently aged (2 mo, 1 yr, 2 yr) wild type (WT) and young (2 mo) D3 receptor knockout mice (D3KO). In WT, systolic and diastolic blood pressures and rate-pressure product (RPP) significantly increased with age, while heart rate significantly decreased. Blood pressure values, heart rate and RPP of young D3KO were significantly elevated over age-matched WT, but similar to those of the 2 yr old WT. Echocardiography revealed that the functional measurements of ejection fraction and fractional shortening decreased significantly with age in WT and that they were significantly smaller in D3KO compared to young WT. Despite this functional change however, cardiac morphology remained similar between the age-matched WT and D3KO. Additional morphometric analyses confirmed an aging-related increase in left ventricle (LV) and myocyte cross-sectional areas in WT, but found no difference between age-matched young WT and D3KO. In contrast, interstitial fibrosis, which increased with age in WT, was significantly elevated in the D3KO over age-matched WT, and similar to 2 yr old WT. Western analyses of myocardial homogenates revealed significantly increased levels of pro- and mature collagen type I in young D3KO. Column zymography revealed that activities of myocardial MMP-2 and MMP-9 increased with age in WTs, but in D3KO, only MMP-9 activity was significantly increased over age-matched WTs. Our data provide evidence that the dopamine D3 receptor has a critical role in the emergence of aging-related cardiac fibrosis, remodeling, and dysfunction

    Wnt signaling controls pro-regenerative Collagen XII in functional spinal cord regeneration in zebrafish

    Get PDF
    The inhibitory extracellular matrix in a spinal lesion site is a major impediment to axonal regeneration in mammals. In contrast, the extracellular matrix in zebrafish allows substantial axon re-growth, leading to recovery of movement. However, little is known about regulation and composition of the growth-promoting extracellular matrix. Here we demonstrate that activity of the Wnt/beta-catenin pathway in fibroblast-like cells in the lesion site is pivotal for axon re-growth and functional recovery. Wnt/beta-catenin signaling induces expression of col12a1a/b and deposition of Collagen XII, which is necessary for axons to actively navigate the non-neural lesion site environment. Overexpression of col12a1a rescues the effects of Wnt/beta-catenin pathway inhibition and is sufficient to accelerate regeneration. We demonstrate that in a vertebrate of high regenerative capacity, Wnt/beta-catenin signaling controls the composition of the lesion site extracellular matrix and we identify Collagen XII as a promoter of axonal regeneration. These findings imply that the Wnt/beta-catenin pathway and Collagen XII may be targets for extracellular matrix manipulations in non-regenerating species

    Renin-angiotensin system inhibitors and risk of fractures: a prospective cohort study and meta-analysis of published observational cohort studies

    Get PDF
    The renin-angiotensin system (RAS) represents an important target of antihypertensive medications. Angiotensin-converting enzyme inhibitors (ACEI) and angiotensin II receptor blockers (ARB), which are widely-used RAS inhibiting drugs, have been suggested to have beneficial effects on bone tissue. We aimed to assess the associations of use of ACEIs and/or ARBs with the risk of fractures using a population-based prospective cohort and a meta-analysis of published prospective cohort studies. Information on antihypertensive medication use (including both ACEIs and ARBs) were assessed in 1743 men and women of the Kuopio Ischemic Heart Disease prospective cohort study. Hazard ratios (HRs) [95% confidence intervals (CI)] of ACEIs or ARBs use with incident fractures were calculated. A total of 203 composite (hip, humeral, and wrist) fractures occurred during a median follow-up of 14.8 years. In multivariate adjusted analysis, the HR for composite fractures comparing users of ACEIs or ARBs with non-users was 1.00 (0.59–1.69). The corresponding adjusted HR for hip fractures comparing users versus non-users of ACEIs or ARBs was 0.89 (0.32–2.47). Including the current study, a total of 11 observational cohort studies involving 3526,319 participants and &gt;323,355 fractures were included in a meta-analysis. Comparing ACEI users with non-users and ARB users with non-users, the HRs for composite fractures were 1.09 (0.89–1.33) and 0.87 (0.76–1.01) respectively. The corresponding HRs for hip fractures were 0.91 (0.86–0.95) and 0.80 (0.75–0.85) respectively. Use of RAS inhibitors was not associated with long-term risk of composite fractures in both primary and pooled analyses. Pooled evidence however suggests a beneficial effect of RAS blockers on hip fracture risk.</p

    Balance Between Rapid Delayed Rectifier K +

    No full text
    corecore