170 research outputs found

    Modeling the Dynamic Currents Recorded under Action Potential-Clamp in Cardiac Myocytes

    Get PDF

    Illuminating cell signaling with genetically encoded FRET biosensors in adult mouse cardiomyocytes.

    Get PDF
    FRET-based biosensor experiments in adult cardiomyocytes are a powerful way of dissecting the spatiotemporal dynamics of the complicated signaling networks that regulate cardiac health and disease. However, although much information has been gleaned from FRET studies on cardiomyocytes from larger species, experiments on adult cardiomyocytes from mice have been difficult at best. Thus the large variety of genetic mouse models cannot be easily used for this type of study. Here we develop cell culture conditions for adult mouse cardiomyocytes that permit robust expression of adenoviral FRET biosensors and reproducible FRET experimentation. We find that addition of 6.25 µM blebbistatin or 20 µM (S)-nitro-blebbistatin to a minimal essential medium containing 10 mM HEPES and 0.2% BSA maintains morphology of cardiomyocytes from physiological, pathological, and transgenic mouse models for up to 50 h after adenoviral infection. This provides a 10-15-h time window to perform reproducible FRET readings using a variety of CFP/YFP sensors between 30 and 50 h postinfection. The culture is applicable to cardiomyocytes isolated from transgenic mouse models as well as models with cardiac diseases. Therefore, this study helps scientists to disentangle complicated signaling networks important in health and disease of cardiomyocytes

    Innovative techniques and new insights: studying cardiac ionic currents and action potentials in physiologically relevant conditions

    Get PDF
    Cardiac arrhythmias are associated with various forms of heart diseases. Ventricular arrhythmias present a significant risk for sudden cardiac death. Atrial fibrillations predispose to blood clots leading to stroke and heart attack. Scientists have been developing patch-clamp technology to study ion channels and action potentials (APs) underlying cardiac excitation and arrhythmias. Beyond the traditional patch-clamp techniques, innovative new techniques were developed for studying complex arrhythmia mechanisms. Here we review the recent development of methods including AP-Clamp, Dynamic Clamp, AP-Clamp Sequential Dissection, and Patch-Clamp-in-Gel. These methods provide powerful tools for researchers to decipher how the dynamic systems in excitation-Ca2+ signaling-contraction feedforward and feedback to control cardiac function and how their dysregulations lead to heart diseases.Las arritmias cardiacas están asociadas a diferentes tipos de enfermedad cardiaca. Las arritmias ventriculares constituyen un alto riesgo de muerte súbita. La fibrilación auricular predispone a coágulos sanguíneos que pueden producir accidentes cerebrovasculares e infarto miocárdico. Los científicos han desarrollado la técnica de patch-clamp para estudiar los canales iónicos y los potenciales de acción (PAs), que constituyen la base de la excitación y las arritmias cardiacas. Además de las clásicas técnicas de patch-clamp, se desarrollaron técnicas innovativas para estudiar los mecanismos complejos de las arritmias. En este trabajo, describimos diferentes métodos recientemente desarrollados tales como AP-clamp (“clampeo” del PA), Dynamic Clamp (“clampeo” dinámico), AP-Clamp Sequential Dissection, (disección secuencial del “clampeo” del AP), y Patch-Clamp-in-Gel (Patch clamp en gel). Estos métodos constituyen herramientas poderosas para descifrar cómo los sistemas dinámicos que constituyen la excitación-las señales de Ca2+ y la contracción, se retroalimentan para controlar la función cardiaca y cómo sus alteraciones llevan a la enfermedad cardiaca.Sociedad Argentina de Fisiologí
    corecore