1,209 research outputs found

    Horizontal and vertical distribution of Atlantic Salmon (Salmo salar) in semi-closed cage system

    Get PDF
    Masteroppgave i havbruk - Universitetet i Nordland, 201

    Contention resolution in wi-fi 6-enabled internet of things based on deep learning

    Get PDF
    Internet of Things (IoT) is expected to vastly increase the number of connected devices. As a result, a multitude of IoT devices transmit various information through wireless communication technology, such as the Wi-Fi technology, cellular mobile communication technology, low-power wide-area network (LPWAN) technology. However, even the latest Wi-Fi technology is still ready to accommodate these large amounts of data. Accurately setting the contention window (CW) value significantly affects the efficiency of the Wi-Fi network. Unfortunately, the standard collision resolution used by IEEE 802.11ax networks is nonscalable; thus, it cannot maintain stable throughput for an increasing number of stations, even when Wi-Fi 6 has been designed to improve performance in dense scenarios. To this end, we propose a CW control strategy for Wi-Fi 6 systems. This strategy leverages deep learning to search for optimal configuration of CW under different network conditions. Our deep neural network is trained by data generated from a Wi-Fi 6 simulation system with some varying key parameters, e.g., the number of nodes, short interframe space (SIFS), distributed interframe space (DIFS), and data transmission rate. Numerical results demonstrated that our deep learning scheme could always find the optimal CW adjustment multiple by adaptively perceiving the channel competition status. The finalized performance of our model has been significantly improved in terms of system throughput, average transmission delay, and packet retransmission rate. This makes Wi-Fi 6 better adapted to the access of a large number of IoT devices. © 2014 IEEE

    Locally Differentially Private Gradient Tracking for Distributed Online Learning over Directed Graphs

    Full text link
    Distributed online learning has been proven extremely effective in solving large-scale machine learning problems over streaming data. However, information sharing between learners in distributed learning also raises concerns about the potential leakage of individual learners' sensitive data. To mitigate this risk, differential privacy, which is widely regarded as the "gold standard" for privacy protection, has been widely employed in many existing results on distributed online learning. However, these results often face a fundamental tradeoff between learning accuracy and privacy. In this paper, we propose a locally differentially private gradient tracking based distributed online learning algorithm that successfully circumvents this tradeoff. We prove that the proposed algorithm converges in mean square to the exact optimal solution while ensuring rigorous local differential privacy, with the cumulative privacy budget guaranteed to be finite even when the number of iterations tends to infinity. The algorithm is applicable even when the communication graph among learners is directed. To the best of our knowledge, this is the first result that simultaneously ensures learning accuracy and rigorous local differential privacy in distributed online learning over directed graphs. We evaluate our algorithm's performance by using multiple benchmark machine-learning applications, including logistic regression of the "Mushrooms" dataset and CNN-based image classification of the "MNIST" and "CIFAR-10" datasets, respectively. The experimental results confirm that the proposed algorithm outperforms existing counterparts in both training and testing accuracies.Comment: 21 pages, 4 figure

    A Global Optimization Algorithm for Generalized Quadratic Programming

    Get PDF
    We present a global optimization algorithm for solving generalized quadratic programming (GQP), that is, nonconvex quadratic programming with nonconvex quadratic constraints. By utilizing a new linearizing technique, the initial nonconvex programming problem (GQP) is reduced to a sequence of relaxation linear programming problems. To improve the computational efficiency of the algorithm, a range reduction technique is employed in the branch and bound procedure. The proposed algorithm is convergent to the global minimum of the (GQP) by means of the subsequent solutions of a series of relaxation linear programming problems. Finally, numerical results show the robustness and effectiveness of the proposed algorithm

    Dataset and Baseline System for Multi-lingual Extraction and Normalization of Temporal and Numerical Expressions

    Full text link
    Temporal and numerical expression understanding is of great importance in many downstream Natural Language Processing (NLP) and Information Retrieval (IR) tasks. However, much previous work covers only a few sub-types and focuses only on entity extraction, which severely limits the usability of identified mentions. In order for such entities to be useful in downstream scenarios, coverage and granularity of sub-types are important; and, even more so, providing resolution into concrete values that can be manipulated. Furthermore, most previous work addresses only a handful of languages. Here we describe a multi-lingual evaluation dataset - NTX - covering diverse temporal and numerical expressions across 14 languages and covering extraction, normalization, and resolution. Along with the dataset we provide a robust rule-based system as a strong baseline for comparisons against other models to be evaluated in this dataset. Data and code are available at \url{https://aka.ms/NTX}.Comment: Technical Repor
    • …
    corecore