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1. Introduction 

Natural multilayers can be frequently observed, like the layered soils and rocks for example 

(Kausel & Roesset, 1981; Kennett, 1983). They are also increasingly used as artificial 

materials and structures in engineering practices for their high performances (Nayfeh, 1995). 

For instances, cross-ply and fibrous laminated composites have been applied in naval 

vessels, aeronautical and astronautical vehicles, and so on for the sake of high strength and 

light weight (Nayfeh, 1995); piezoelectric thin film systems have been used in various 

surface acoustic wave (SAW) and bulk acoustic wave (BAW) devices in electronics and 

information technology in order to accomplish smaller size, lower energy consumption, 

higher operating frequency and sensitivity, greater bandwidth, and enhanced reception 

characteristics (Auld, 1990; Adler, 2000). Consequently, as a widespread category of 

inhomogeneous materials and structures, multilayered structures deserve special concern 

about their mechanical and acoustical behavior, especially the dynamic behavior since it is 

what these structures differ most markedly from the homogeneous materials and structures. 

Investigation of acoustic wave propagation in multilayered structures plays an essential role 

in understanding their dynamic behavior, which is the main concern in design, 

optimization, characterization and nondestructive evaluation of multilayered composites 

(Lowe, 1995; Chimenti, 1997; Rose, 1999) and acoustic wave devices (Auld, 1990; Rose, 1999; 

Adler, 2000). Nevertheless, the top and bottom surfaces and the interfaces in a multilayered 

structure cause reflection and/or transmission of elastic waves, giving rise to coupling of 

various fundamental wave modes in adjacent layers. In multilayered structures consisting of 

anisotropic media, even the fundamental wave modes themselves are mutually coupled in 

each layer (Achenbach, 1973). As a result, the analysis of acoustic waves in multilayered 

structures always remains an extraordinary complex problem, and it is very difficult to 

obtain a simple and yet numerically well-performed, closed-form analytical solution for a 

general multilayered structure. 

For the above reasons, various matrix formulations have been developed for the analysis of 
acoustic wave propagation in multilayered media from diverse domains (Ewing et al., 1957; 
Brekhovskikh, 1980; Kennett, 1983; Lowe, 1995; Nayfeh, 1995; Rose, 1999), since the 
beginning of this research subject in the midst of last century. Most of these matrix methods 
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were presented initially for multilayered structures consisting of isotropic (transversely 
isotropic) materials, and then extended to those structures made of anisotropic elastic and 
piezoelectric layers. These matrix methods fall into two groups. One group is those 
numerical methods based on discrete models, such as the boundary element method (BEM) 
(Makkonen, 2005), the finite difference method (FDM) (Igel et al., 1995; Makkonen, 2005), 
the finite element method (FEM) (Datta et al., 1988; Makkonen, 2005) and the hybrid method 
of BEM and FEM (BEM/FEM) (Makkonen, 2005). This group of methods is powerful for 
modeling acoustic waves in multilayered structures with various geometries and 
boundaries. However, they have the disadvantage that the results are approximate, and 
particularly certain high frequency components must be thrown off in any discrete model. 
The accuracy of the computational results and the stability of the numerical algorithms 
depend greatly on the discretization in the temporal and spatial domains. Calculation 
efficiency will be dramatically decreased if higher accuracy is pursued. The other group is 
those analytical methods based on continuous (distributed-parameter) model, among which 
the transfer matrix method (TMM) (Lowe, 1995), also referred to as the propagator matrix 
method (PMM) (Alshits & Maugin, 2008), is the typical one. TMM (Thomson, 1950; Haskell, 
1953; Lowe, 1995; Nayfeh, 1995; Adler, 1990, 2000) leads to a system equation with 
dimension keeping small and unchanged as the number of layers increases, since in the 
formulation the basic unknowns of the intermediate layers are eliminated by matrix 
products. Thus, TMM has the advantage of high accuracy and high efficiency in most cases, 
but it suffers from numerical instability in the case of high frequency-thickness products 
(Nayfeh, 1995; Adler, 1990, 2000; Lowe, 1995; Tan, 2007). Aiming at circumventing this kind 
of numerical difficulty, different variant forms of TMM as well as analytical matrix methods 
have been proposed, including the stiffness matrix method (Kausel & Roesset, 1981; Shen et 
al., 1998; Wang & Rokhlin, 2001, 2002a; Rokhlin & Wang, 2002a; Tan, 2005), the spectral 
element method (Rizzi & Doyle, 1992; Chakraborty & Gopalakrishnan, 2006), the surface 
impedance matrix method (Honein et al., 1991; Degettekin et al., 1996; Zhang et al., 2001; 
Hosten & Castaings, 2003; Collet, 2004), the hybrid compliance/stiffness matrix method 
(Rokhlin & Wang, 2002b; Wang & Rokhlin, 2004a; Tan, 2006), the recursive asymptotic 
stiffness matrix method (Wang & Rokhlin, 2002b, 2004b, 2004c), the scattering matrix 
method (Pastureaud et al., 2002) and the compound matrix method (Fedosov et al., 1996), 
for instances. Tan (Tan, 2007) compared some of these methods in mathematical algorithm, 
computational efficiency and numerical stability. However, most of these alternative 
formulations lack uniformity in a certain degree, and are computationally complicated and 
inefficient, especially for the high frequency analysis. 
Lately, Pao and his coworkers (Pao et al, 2000; Su et al., 2002; Tian et al., 2006) developed the 
method of reverberation-ray matrix (MRRM) for evaluating the transient wave propagation 
in layered isotropic and transversely isotropic media. It is shown that MRRM has many 
advantages and its comparison to the TMM in various aspects was discussed by Pao et al. 
(Pao et al., 2007). However, the original formulation of MRRM is based on the wave 
potential functions, which confines this numerically stable and uniform matrix method from 
extending to layered anisotropic structures. In fact, it is impossible to use wave potential 
functions for an arbitrarily anisotropic medium, in which the fundamental wave modes are 
mutually coupled (Achenbach, 1973). Thus, Guo and Chen (Guo & Chen, 2008a, 2008b; Guo, 
2008; Guo et al., 2009) presented a new formulation of MRRM based on state-space 
formalism and plane wave expansion for the analysis of free waves in anisotropic elastic 
and piezoelectric layered media. 
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The objective of this chapter is to present the general and unified formulation of the method 
of reverberation-ray matrix (MRRM) for the analysis of acoustic wave propagation in 
multilayered structures of arbitrarily anisotropic elastic and piezoelectric media based on 
the state-space formalism and Fourier transforms. In Section 2, the state equation for each 
layer made of an arbitrarily anisotropic elastic/piezoelectric material is derived from the 
three-dimensional linear theory of elasticity/piezoelectricity with the help of Fourier 
transforms, and the solution to the state equation boils down to an eigenvalue problem from 
which the propagation constants and characteristic mode coefficients can be obtained 
numerically for a specified frequency. Then the traveling wave solution to the state equation 
can be written in explicit form in terms of unknown amplitudes as well as known 
propagation constants and characteristic mode coefficients. In Section 3, we show how the 
multilayered anisotropic structure is described in both the global and the local dual 
coordinates. From the boundary conditions on the upper and lower surfaces with applied 
external forces and the continuity conditions at the interfaces, the scattering relation, which 
expresses one group of equations for the unknown wave amplitudes in dual local 
coordinates, is appropriately constructed such that matrix inversion is avoided. Due to the 
uniqueness of physical essence, the two solutions expressed in dual local coordinates should 
be compatible with each other, leading to the phase relation, which represents the other 
group of equations for the unknown wave amplitudes in dual local coordinates. Care must 
be taken of to properly establish the phase relation such that all exponentially growing 
functions are excluded. The number of simultaneous equations from the phase and 
scattering relations amount exactly to the number of unknown wave amplitudes in dual 
local coordinates, and hence the wave solution can be determined. To reduce the dimension, 
we substitute the phase relation into the scattering relation to obtain a system equation, 
from which the dispersion relation for free wave propagation is obtained by letting the 
determinant of coefficient matrix vanish, and the steady-state and transient wave 
propagation due to the external force excitations can be obtained by inverse Fourier 
transforms. Section 4 gives numerical examples of guided wave propagation in cross-ply 
elastic composite structures. Dispersion curves for different configurations, various 
boundary conditions and in particular at the high frequency range are illustrated to show 
the versatility and numerical stability of the proposed formulation of MRRM. Effects of 
configurations and boundaries on the dispersion spectra are clearly demonstrated through 
comparison. Conclusions are drawn in Section 5, with highlights of advantages of the 
proposed general formulation of MRRM for characterizing the acoustic waves in 
multilayered anisotropic structures. 

2. State space formalism for anisotropic elastic and piezoelectric layers 

2.1 Governing equations and state vectors 

Consider a homogeneous, arbitrarily anisotropic elastic medium. From the three-
dimensional linear elasticity (Synge, 1956; Stroh, 1962; Nayfeh, 1995) we have the 
constitutive relations 

 σ ε=ij ijkl klc  (1) 

the strain-displacement relations 

 , ,( ) / 2kl k l l ku uε = +  (2) 
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and the equations of motion (in absence of body forces) 

 σ ρ= $$
,ij j iu  (3) 

where the comma in the subscripts and superposed dot imply spatial and time derivatives, 

σ ij , ε kl  and iu  are respectively the stress, strain and displacement tensors, ijklc  are the 

elastic constants, and ρ  is the material density. The dynamic governing equations can be 

simplified by eliminating the strain tensor to 

 σ = +, ,( ) / 2ij ijkl k l l kc u u            σ ρ= $$
,ij j iu  (4) 

It is commonly difficult to obtain solutions to Eq. (4) for an anisotropic medium of the most 

general kind as there are 21 independent elastic constants in total, and the deformations in 

different directions and of different kinds are coupled. However, for an arbitrarily 

anisotropic elastic layer, the state space formulation (Tarn, 2002a) can be established by 

grouping the field variables properly. Assume that the correspondence between the digital 

indices and coordinates follows a usual rule, i.e. →1 x , →2 y , and →3 z . If the z  axis is 

along the thickness direction of the laminate, we divide the stresses into two groups: the 

first consists of the components on the surface of z =const., and the second consists of the 

remaining components. The combination of the displacements = T[ , , ]u u v wv  and the first 

group of stresses σ τ τ σ= T[ , , ]zx zy zv  gives the state vector σ= T T T[( ) ,( ) ]uv v v . 
For piezoelectric materials of the most general kind, in the catalogue of three-dimensional 
linear theory (Ding & Chen, 2001), we have the constitutive relations instead of Eq. (1) 

 σ ε= −ij ijkl kl kij kc e E , ε β= +i ikl kl ik kD e E   (5) 

the strain-displacement relations of Eq. (2) are further supplemented by 

 ϕ= − ,k kE  (6) 

and the equations of motion in Eq.(3) are complemented with (in absence of free charges) 

 =, 0i iD  (7) 

where iD , kE  and ϕ  are respectively the electric displacement, field and potential tensors, 

and kije  and βik  are the piezoelectric and permittivity constants, respectively. In view of Eqs. 

(2), (6) and (5), the dynamic governing equations become 

 
σ ϕ

β ϕ
= + +⎧

⎨ = + −⎩

, , ,

, , ,

( ) / 2

( ) / 2
ij ijkl k l l k kij k

i ikl k l l k ik k

c u u e

D e u u
          

σ ρ=⎧
⎨ =⎩

$$
,

, 0
ij j i

i i

u

D
 (8) 

where the coupling between the mechanical and electrical fields is clearly seen. It is noted 

that the independent piezoelectric and permittivity constants of arbitrarily piezoelectric 

media should be 18 and 6 respectively, adding further complexity to the solution procedure. 

However, for an anisotropic piezoelectric layer of the most general kind, the state space 

formalism (Tarn, 2002b) can also be established just as for arbitrarily anisotropic elastic 

layer. This will be illustrated in the following section. For piezoelectric materials, the state 
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vector is defined by T T T[( ) ,( ) ]u σ=v v v , with T[ , , , ]u u v w ϕ=v  being the generalized 

displacements and T[ , , , ]zx zy z zDσ τ τ σ=v  the first group of generalized stresses. 

2.2 Fourier transforms and state equations 

By virtue of the triple Fourier transform pairs as follows 

 
ii iˆ( ; , ; ) ( , , , )e e e d d dyx

ykk x t
x yf k k z f x y z t x y tωω

+∞ +∞ +∞ −− −

−∞ −∞ −∞
= ∫ ∫ ∫  (9) 

 
ii3 i1 ˆ( , , , ) ( ) ( ; , ; )e e e d d d

2
yx

kk t
x y

yx
y xf x y z t f k k z k kωω ω

π
+∞ +∞ +∞

−∞ −∞ −∞
= ∫ ∫ ∫  (10) 

the generalized displacements and stresses as well as dynamic governing equations given in 

Eqs. (4) and (8) in the time-space domain can be transformed into those in the frequency-

wavenumber domain, where ω  is the circular frequency; xk  and yk  are the wavenumbers 

in the x  and y  directions, respectively; = −i 1  is the unit imaginary; and the z -

dependent variable in the frequency-wavenumber domain is indicated with an over caret. 

By eliminating the second group of generalized stresses, the transformed Eqs. (4) and (8) in a 

right-handed coordinate system can be reduced to a system of first-order ordinary 

differential equations with respect to the state vector, which contains / 2vn  generalized 

displacement components and / 2vn  generalized stress components, as follows 

 =
ˆd ( )

ˆ( )
d

z
z

z

v
Av  (11) 

 

which is usually referred to as the state equation. The coefficient matrix A of order ,v vn n×  

with all elements being functions of the material constants, the circular frequency ω  or the 

wavenumbers xk  and yk , can be written in a blocked form 

 11 12

21 22

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A A
A

A A
 (12) 

where 

−= − 1
11 33iA G W , −= 1

12 33A G , −= − T 1
22 33iA W G  

 

( )ρω −= − + + + + −2 2 2 T 1
21 11 22 12 21 33x y x yk k k kA M G G G G W G W  

(13) 

with = +31 32x yk kW G G . For a layer of arbitrarily anisotropic elastic material, we have 

 = 6vn , 

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

k l k l k l

kl k l k l k l

k l k l k l

c c c

c c c

c c c

G , = 3M I  (14) 

while for a layer of arbitrarily anisotropic piezoelectric material, we have 
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 = 8vn , 

β

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥

−⎣ ⎦

1 1 1 2 1 3 1

2 1 2 2 2 3 2

3 1 3 2 3 3 3

1 2 3

k l k l k l l k

k l k l k l l k

kl

k l k l k l l k

k l k l k l kl

c c c e

c c c e

c c c e

e e e

G , 
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

3 0

0 0

I
M  (15) 

where 3I  denotes the identity matrix of order 3. 

2.3 Traveling wave solutions to the state equation 

According to the theory of ordinary differential equation (Coddington & Levinson, 1955), 
the solution to the state equation (11) can be expressed as 

 ( ) ( )
σ σ

⎧ ⎫ ⎧ ⎫
= = =⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭

ˆ ( )
ˆ ( ) exp exp

ˆ ( )
u uz

z z z
z

v Φ
v Φ Λ w Λ w

v Φ
 (16) 

where ⋅exp( )  denotes the matrix exponential function; Λ  and Φ  are the ×v vn n  diagonal 

eigenvalue matrix and square eigenvector matrix of the coefficient matrix A , respectively; 

uΦ  and σΦ  are the ×/2v vn n  sub-matrices of Φ  corresponding to the generalized 

displacement and stress vectors, respectively; and w  is the vector of undetermined 

coefficients with vn  components.  

When combined with the common factors in the integrand of inverse transform in Eq. (10), 

the solutions in Eq. (16) are interpreted as the total response corresponding to harmonic 

plane traveling waves with different wavenumbers λ− i  in the z  direction ( = A1,2, , vi n ) 

and common wavenumbers − xk  and − yk  in the x  and y -directions at a common radian 

frequency ω , where λi  is the i th component of the diagonal wavenumber matrix Λ . The 

corresponding undermined coefficient iw denotes the wave amplitude, and the components of 

the corresponding eigenvector iΦ  give the state variable response coefficients of the thi wave.  

According to the nature of wavenumber λ− i , the characteristic waves can be divided into 

two groups, the an  arriving waves with their z -axis projection along the negative direction 

and the dn  departing waves with their z -axis projection along the positive direction 

(Ingebrigtsen & Tonning, 1969). Denote the respective sub eigenvalue matrices as −Λ  (of 

order a an n× ) and +Λ  (of order d dn n× ), both being diagonal, the respective sub eigenvector 

matrices as −Φ  (of order v an n× ) and +Φ  (of order v dn n× ), and the respective amplitude 

vectors as a  (the arriving wave vector) and d  (the departing wave vector). Obviously, we 

have T T T[ , ]=w a d . Therefore, the matrices −Λ  and −Φ  and the vector a  correspond to the 

eigenvalues iλ , which satisfy Re( ) 0iλ− <  or Re( ) 0,Im( ) 0i iλ λ− = − < , while the matrices +Λ  

and +Φ  and the vector d  are associated with the remaining eigenvalues. It is easily seen 

that we always have a d vn n n+ =  with 6vn =  for elastic materials and 8vn =  for 

piezoelectric materials. Consequently, the solution to the state equation given in Eq. (16) can 

be rewritten as 

 

[ ] ( )
( )
( )

( )σ σσ

−
− +

+

− + −

− + +

⎡ ⎤ ⎧ ⎫
= ⎨ ⎬⎢ ⎥

⎩ ⎭⎣ ⎦
⎡ ⎤⎧ ⎫ ⎧ ⎫⎡ ⎤

= =⎨ ⎬ ⎨ ⎬⎢ ⎥⎢ ⎥
⎣ ⎦⎩ ⎭ ⎩ ⎭⎣ ⎦

exp
ˆ( )

exp

ˆ ( ) exp

ˆ ( ) exp
u u u

z
z

z

z z

z z

aΛ 0
v Φ Φ

d0 Λ

v Φ Φ aΛ 0

Φ Φv d0 Λ

 (17) 
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where −uΦ  and σ −Φ  are ×/ 2v an n  sub eigenvector matrices of −Φ  corresponding to the 

generalized displacement and stress vectors, respectively; +uΦ  and σ +Φ  are those 

×/ 2v dn n  sub eigenvector matrices of +Φ . It is noted from Eq. (17) that the only unknowns 

in the solutions are the wave amplitudes, which should be determined from the system 

equation formulated by simultaneously considering the dynamic state of all constituent 

layers of the structure and their interactions. This will be shown in the following section 

within the framework of reverberation-ray matrix analysis. 

3. Unified formulation of MRRM 

The schematic of a multilayered anisotropic structure of infinite lateral extent is depicted in 

Fig. 1, which consists of a perfect stacking of n  homogeneous arbitrarily anisotropic elastic 

or piezoelectric layers. From up to down, the layers are denoted in order by numbers 1 to n , 

and the top surface, interfaces and bottom surface in turn are denoted by numbers 1 to 

+ 1N , bearing the fact that =n N . The top and bottom surfaces are denoted by 1  and 

1N +  respectively, and the upper and lower bounding faces of an arbitrary layer, j  for 

instance, are respectively denoted by J  and K , with =J j  and = + 1K j  and the layer will 

be referred to as JK  or KJ . 
 

          

       

Fig. 1. The schematic of an n-layered anisotropic laminate 

3.1 Description of the structural system 

A global coordinate system ( , , )X Y Z  with its origin located on the top surface and the Z - 

axis along the thickness direction, as shown in Fig. 1a, is established for the system analysis 

of the whole structure. The physical variables associated with a surface/interface will be 

described in the global coordinates, and will be affixed with a single superscript, J  or K  for 

example, to indicate their affiliation. 

As a unique feature of MRRM, a pair of dual local coordinates ( , , )JK JK JKx y z  and 

( , , )KJ KJ KJx y z  is used to describe each layer JK  (or KJ ), with JKz  originating from J  to K  

and zKJ from K  to J , JKy  and KJy  in the same direction as the Y -axis, and JKx  in the same 

and KJx  in the opposite direction of the X -axis, as shown in Fig. 1b. The physical variables 

(b) Description of a typical layer j  in 

local dual coordinates 

+ ( 1)K j

JKx
 ( )J j

j
JKzJKy
KJz

KJx
KJy

1
1

2

X

Y

Z

2

3

J

K
j

n
N

+ 1N

(a) Description of the laminated 
structure in global coordinates 
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inside the layers will be described in the local dual coordinates and double superscripts,  JK  

or KJ  for instance, will be affixed to any physical quantity to denote the corresponding 

coordinate system and the pertaining layer. As an example, ˆ JK
v  and ˆ KJ

v  are the state 

vectors for layer JK  (or KJ ) in the coordinates ( , , )JK JK JKx y z  and ( , , )KJ KJ KJx y z , respectively.  
To make the sign convection more clear, physical variables are deemed to be positive as it is 
along the positive direction of the pertinent coordinate axis. 

It is seen from Fig. 1b that the dual local coordinates are both right-handed, thus the state 

equations in Eq. (11) and the traveling wave solutions in Eqs. (16) and (17) all come into 

existence for an arbitrary layer JK  (or KJ ) in ( , , )JK JK JKx y z  and ( , , )KJ KJ KJx y z , which are 

written as 

 =
ˆd ( )

ˆ ( )
d

JK JK
JK JK JK

JK

z
z

z

v
A v  (18) 

 =
ˆd ( )

ˆ ( )
d

KJ KJ
KJ KJ KJ

KJ

z
z

z

v
A v  (19) 

 
( )

( )
−

− +

+

⎡ ⎤ ⎧ ⎫⎪ ⎪⎢ ⎥⎡ ⎤= = ⎨ ⎬⎣ ⎦ ⎢ ⎥ ⎪ ⎪⎩ ⎭⎣ ⎦

exp
ˆ ( ) exp( )

exp

JK JK JK

JK JK JK JK JK JK JK JK

JKJK JK

z
z z

z

Λ 0 a
v Φ Λ w Φ Φ

d0 Λ
 (20) 

 
( )

( )
−

− +

+

⎡ ⎤ ⎧ ⎫⎪ ⎪⎢ ⎥⎡ ⎤= = ⎨ ⎬⎣ ⎦ ⎢ ⎥ ⎪ ⎪⎩ ⎭⎣ ⎦

exp
ˆ ( ) exp( )

exp

KJ KJ KJ

KJ KJ KJ KJ KJ KJ KJ KJ

KJKJ KJ

z
z z

z

Λ 0 a
v Φ Λ w Φ Φ

d0 Λ
 (21) 

From Eqs. (20) and (21) we see that there are totally vn N×  arriving wave amplitudes and 

vn N×  departing wave amplitudes for all layers in dual local coordinates, which should be 

determined by 2 vn N×  relations. It is deduced that the basic unknowns (wave amplitudes) 

in the MRRM double in number due to the particular description of dynamic state in dual 

local coordinates, as compared with that in other analytical methods which are usually 

based on single local coordinates. However, by doing so in the MRRM, the boundary 

conditions on surfaces and continuous conditions at interfaces take on an extremely simple 

form since the exponential functions in the solutions no longer appear, as will be seen from 

Section 3.2. Furthermore, as will be shown in Section 3.3, the arriving and departing wave 

amplitudes in dual local coordinates are related directly from the point of view of wave 

propagation through the layer. Thus it shall be possible to deduce a system equation in 

terms of only the departing wave vectors of all layers. In such a case, the dimension of the 

system equation will be the same as the one of other analytical methods based on single 

local coordinates, such as the stiffness matrix method and the spectral element method, as 

discussed in Section 3.4.  

3.2 Scattering relation from coupling conditions on surfaces and at interfaces 
3.2.1 Local scattering relations of top and bottom surfaces 

As depicted in Fig. 2, the response of state variables on the top and bottom surfaces, 12ˆ (0)v  

and ( 1)ˆ (0)N N+
v , corresponding to various waves in the top and bottom layers, respectively, 
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should be in accordance with the external state variables 1ˆ
Ev  (= 1 T 1 T Tˆ ˆ[( ) ,( ) ]uE Eσv v ) and ( 1)ˆ N

E
+

v  

(= ( 1) ( 1)T T Tˆ ˆ[( ) ,( ) ]N N
uE Eσ

+ +
v v ) , i.e.  

 

 

Fig. 2. The top and bottom surfaces of the multilayered anisotropic structure 

 12 1ˆ ˆ(0) E E=v T v , ( 1) ( 1)ˆ ˆ(0)N N N
v E E

+ +=T v T v  (22) 

where ,E uE Eσ=< >T T T  is a transformation matrix with /2vuE n=T I  and /2vE nσ = −T I ; 

,v u σ=< >T T T  is also a transformation matrix, with 1,1, 1u =< − − >T  and 1, 1,1σ =< − >T  for 

elastic layers and 1,1, 1, 1u =< − − − >T  and 1, 1,1,1σ =< − >T  for piezoelectric layers. Here 

< ⋅ >  denotes the (block) diagonal matrix with elements (or sub-matrices) only on the main 

diagonal and /2vnI  represents the identity matrix of order / 2vn .  

By virtue of Eqs. (20) and (21), the solutions to 12ˆ (0)v  and ( 1)ˆ (0)N N+
v  can be obtained as 

 
12

12 12 12 12 12

12
ˆ (0) − +

⎧ ⎫⎪ ⎪⎡ ⎤= = ⎨ ⎬⎣ ⎦ ⎪ ⎪⎩ ⎭

a
v Φ w Φ Φ

d
 (23) 

 
( 1)

( 1) ( 1) ( 1) ( 1) ( 1)

( 1)
ˆ (0)

N N

N N N N N N N N N N

N N

+
+ + + + +

− + +

⎧ ⎫⎪ ⎪⎡ ⎤= = ⎨ ⎬⎣ ⎦ ⎪ ⎪⎩ ⎭

a
v Φ w Φ Φ

d
 (24) 

where the exponential functions disappear since the thickness coordinates on the surfaces 

are always zero in the corresponding local coordinates. This is the main advantage of 

introducing the dual local coordinates. It should be noticed that half of the components of 

vectors 1ˆ
Ev  and ( 1)ˆ N

E
+

v  are known, which are denoted by vectors 1ˆ
Kv  and ( 1)ˆ N

K
+

v , respectively, 

while the remaining half are unknown, denoted by vectors 1ˆ
Uv  and ( 1)ˆ N

U
+

v , respectively.  

Substituting Eqs. (23) and (24) into Eq. (22), we can derive 

 12 12 12 12 1 1 1
0

ˆ
K K+ = =A a D d T v s , ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

0
ˆN N N N N N N N N N N

K K
+ + + + + + ++ = =A a D d T v s  (25) 

N
( 1)N N+
d

( 1)N N+
a

( 1)N Nz +

( 1)N Nx +

( 1)N Nh +n

1N +

( 1)N Ny +

2

1

12z

12h
12y

12
d

12x

12
a

1

(a) top surface 

(b) bottom surface

12
v

1
Ev

( 1)N N+
v

( 1)N
E

+
v
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where 12
A , 12

D , ( 1)N N+
A , ( 1)N N+

D , 1
KT  ( ( 1)N

K
+

T ) are the coefficient matrices with components 

extracted, in accordance with 1ˆ
Kv  and ( 1)ˆ N

K
+

v , from 12
−Φ , 12

+Φ , ( 1)N N+
−Φ , ( 1)N N+

+Φ  and ET  ( ET  

and vT ) respectively. 1
0s  and ( 1)

0
N+
s are excitation source vectors with / 2vn  components of 

the top and bottom surfaces, respectively. Particularly as far as free waves are concerned, if 

the top surface is mechanically traction-free (and electrically open-circuit), we have  

 1 1 1 1 1 Tˆ ˆ ˆ ˆ ˆ[ , , ]K E X Y Zσ τ τ σ= = =v v 0  (or 1 1 1 1 1 1 Tˆˆ ˆ ˆ ˆ ˆ[ , , , ]K E X Y Z ZDσ τ τ σ= = =v v 0 ) (26) 

 12 12
σ −=A Φ , 12 12

σ +=D Φ  (27) 

and when the top surface is mechanically fixed (and electrically closed-circuit) we have 

 1 1 1 1 1 Tˆ ˆ ˆ ˆ ˆ[ , , ]K uE X Y Zu u u= = =v v 0  (or 1 1 1 1 1 1 Tˆ ˆ ˆ ˆ ˆ ˆ[ , , , ]K uE X Y Z Zu u u ϕ= = =v v 0 ) (28) 

 12 12
u−=A Φ , 12 12

u+=D Φ  (29) 

For mixed boundary conditions, the form of known quantities and coefficient matrices can 

also be worked out accordingly. The boundary conditions on the bottom surface can be 

similarly deduced and will not be discussed for brevity. 

Eq. (25) can be further written in a form of local scattering relations on the top and bottom 

surfaces 

 1 1 1 1 1
0+ =A a D d s , ( 1)1 1 1 1

0
NN N N N ++ + + ++ =A a D d s  (30) 

where 1 12=a a  ( ( 1)1 N NN ++ =a a ) and 1 12=d d  ( ( 1)1 N NN ++ =d d ) are the arriving and departing 

wave vectors of the top (bottom) surface, 1 12=A A  ( ( 1)1 N NN ++ =A A ) and 1 12=D D  

( ( 1)1 N NN ++ =D D ) are 12/2v an n×  ( ( 1)/2 N N
v an n +× ) and 12/2v dn n×  ( ( 1)/2 N N

v dn n +× ) coefficient 

matrices corresponding to the arriving and departing wave vectors of the top (bottom) 

surface, respectively. 
It should be pointed out that the form of local scattering relations at the boundaries given in 
Eq. (30) is also valid for surface waves in a multilayered structure. 

3.2.2 Local scattering relations of a typical interface 

 

 
 

 

Fig. 3. A typical interface J of the multilayered anisotropic structure 
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Since the adjacent layers in the structure are perfectly bonded, the state variables should be 
continuous across the interfaces. Taking the typical interface J as shown in Fig. 2 for 
illustration, the compatibility of the generalized displacements and equilibrium of the 
generalized forces require 

 ˆ ˆ(0) (0)JI JK
v =T v v  (31) 

This gives, according to the solutions in Eqs. (20) and (21), 

 
JI JI JI JK JK JK

u u u u u u

JI JI JI JK JK JK
σ σ σ σ σ σ

− + − +

− + − +

⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭

TΦ TΦ a Φ Φ a

T Φ T Φ d Φ Φ d
 (32) 

It should be noticed once again that there is no exponential functions in the coupling 

equation (32) for interfaces. By grouping the arriving and departing wave vectors of relevant 

layers into the local arriving and departing wave vectors of the interface T T T[( ) ,( ) ]J JI JK=a a a  

and T T T[( ) ,( ) ]J JI JK=d d d , Eq. (32) is reduced to the local scattering relation of the typical 

interface J  

 J J J J+ =A a D d 0  (33) 

where the ( )JI JK
v a an n n× +  and ( )JI JK

v d dn n n× +  coefficient matrices J
A  and J

D , respectively, are 

 
JI JK

J u u u

JI JK
σ σ σ

− −

− −

⎡ ⎤−
= ⎢ ⎥−⎣ ⎦

TΦ Φ
A

T Φ Φ
, 

JI JK
J u u u

JI JK
σ σ σ

+ +

+ +

⎡ ⎤−
= ⎢ ⎥−⎣ ⎦

T Φ Φ
D

T Φ Φ
 (34) 

There are altogether N – 1 (n – 1) interfaces in the multilayered structure, so that we have 
1N −  ( 1n − ) local scattering equations like Eq. (33). 

3.2.3 Global scattering relation of the structure 

The local scattering relations of top surface, interfaces and bottom surface have respectively 

/ 2vn , ( 1)vn N× −  and / 2vn  equations, which are grouped together from up to down to 

give the vn N×  global scattering relation 

 0+ =Aa Dd s  (35) 

where the global arriving and departing wave vectors a  and d  are 

T( 1) ( 1)12 T 21 T 23 T T T T T( ) ,( ) ,( ) , ,( ) ,( ) , ,( ) ,( )N N N NJI JK + +⎡ ⎤= ⎣ ⎦a a a a a a a aA A  

T( 1) ( 1)12 T 21 T 23 T T T T T( ) ,( ) ,( ) , ,( ) ,( ) , ,( ) ,( )N N N NJI JK + +⎡ ⎤= ⎣ ⎦d d d d d d d dA A  
(36) 

the corresponding ( ) ( )v vn N n N× × ×  coefficient matrices A  and D  are 

 1 2 1, , , , ,J N +=< >A A A A AA A , 1 2 1, , , , ,J N +=< >D D D D DA A  (37) 

and 
T( 1)1 T T T T

0 0 0( ) , , , ,( )N +⎡ ⎤= ⎣ ⎦s s 0 0 sA   is the global excitation source vector. It should be noted 

that the forming process of scattering relations in Eqs. (30), (33) and (35) exclude matrix 
inversion as compared to that in the original formulation of MRRM (Pao et al, 2000, 2007; Su 
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et al., 2002; Tian et al., 2006), which guarantees the numerical stability and at the same time 
enables the inclusion of surface and interface wave modes, in the proposed formulation of 
MRRM (Guo & Chen, 2008a, 2008b; Guo, 2008; Guo et al., 2009).  

3.3 Phase relation from compatibility conditions of layers 
3.3.1 Local phase relation of a typical layer 
Considering the formation of the dual local coordinates of a typical layer JK (KJ) as 
discussed in Section 3.1, we have the geometrical dual transformation relations 

 JK KJx x= − , JK KJy y= , JK JK KJz h z= − , d dJK KJz z= −  (38) 

where JKh  ( KJh= ) represents the thickness of layer JK (KJ), and the physical dual 
transformation relations 

 ( ) ( )ˆ ˆJK JK KJ KJ
vz z=v T v  (39) 

By virtue of Eqs. (18) and (19), Eqs. (38) and (39), and the definitions of eigenvalue and 
eigenvector, it is derived that 

 1( ) ( )KJ KJ JK JK
v vz z −= −A T A T , JK KJ= −Λ Λ , JK KJ

v=Φ TΦ  (40) 

It is interpreted that if JKλ  and JK
λφ  are the eigenvalue and eigenvector of the coefficient 

matrix JK
A , then JKλ−  and JK

v λT φ  must be the corresponding eigenvalue and eigenvector of 
the coefficient matrix KJ

A . The equality relations between the numbers of arriving and 
departing waves in dual local coordinates, i.e. JK KJ

a dn n=  and JK KJ
d an n= , are also implied. 

Substituting Eqs. (20) and (21) into Eq. (39), and in view of Eq. (40) and 1 ,v v
−=T T  one 

obtains the local phase relation of a typical layer JK  (KJ) 

 
( )

( )
exp

exp

JK JKJK KJ JKJK JK
a

KJ JKKJ JK KJJK JK
d

h

h

−

+

⎡ ⎤−⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥
⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎣ ⎦

Λ 0a d dP 0 0 I

0 P I 0a d d0 Λ
 (41) 

where the JK JK
a an n×  and JK JK

d dn n×  diagonal matrices exp( )JK JK JKh−= −P Λ  and 
exp( )KJ JK JKh+=P Λ  are referred to as local phase matrices, and JK

aI  and JK
dI  are identity 

matrices of order JK
an  and JK

dn , respectively. It should be noted that the exponentially 
growing functions, which usually cause numerical instability (such as in the TMM) for large 
values of the frequency-thickness product, have been completely excluded from the phase 
matrices JK

P  and KJ
P , since we always have Re( ) 0JK JKhλ− >  or 

Re( ) 0,  Im( ) 0JK JK JK JKh hλ λ− −= >  ( Re( ) 0JK JKhλ+ <  or Re( ) 0,  Im( ) 0JK JK JK JKh hλ λ+ += < ). As 
indicated by Eq. (41), there are vn  equations in the local phase relation of each layer. 

3.3.2 Global phase relation of the structure 

Grouping together the local phase relations for all layers from up to down yields the global 
phase relation with vn N×  equations 

 = =a Pd PUd  (42) 

where the ( ) ( )v vn N n N× × ×  block diagonal matrices P , named the global phase matrix, is 
composed of 
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 ( 1) ( 1)12 21 23, , , , , , , ,N N N NJI JK + +=< >P P P P P P P PA A  (43) 

the variant of the global departing wave vector d  is related to the wave vector d  by the 
( ) ( )v vn N n N× × ×  block diagonal matrix U , which is referred to as the global permutation 
matrix, to account for the different sequence of components arrangement between d  and d . 
The specific forms of U  and d  are as follows 

 ( 1)12 23, , , , , N NJK +=< >U U U U UA A , 
v v

JK
JK a
n n JK

d

×

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0 I
U

I 0
 (44) 

 
T( 1) ( 1)21 T 12 T 32 T T T T T( ) ,( ) ,( ) , ,( ) ,( ) , ,( ) ,( )N N N NIJ KJ + +⎡ ⎤= ⎣ ⎦d d d d d d d dA A  (45) 

It is seen from Eq. (42) that the global arriving and departing wave vectors a and d, 
consisting of respectively the arriving and departing wave amplitudes in local dual 
coordinates of all layers and having the same forms as those in the global scattering relation in 
Eq. (36), are related directly through the global phase relation, which enables the dimension 
reduction of the system equation, making the final scale the same as the one in other 
analytical methods which are based on single local coordinates. 

3.4 System equation and dispersion equation 

The global scattering relation in Eq. (35) and global phase relation in Eq. (42) contain 

respectively vn N×  equations for the vn N×  unknown arriving wave amplitudes (in a ) 

and vn N×  unknown departing wave amplitudes (in d ). Thus the wave vectors can be 

determined. Substitution of Eq. (42) into Eq. (35) gives the system equation 

 0( )+ = =APU D d Rd s  (46) 

where = +R APU D  is the system matrix.  
If there is no surface excitation, i.e. s0 = 0 and the free wave propagation problem is considered, 
the vanishing of the system matrix determinant yields the following dispersion equation 

 ( ; ; )x yk k ω =R 0  (47) 

which may be solved numerically by a proper root searching technique (Guo, 2008). Thus, 
the complete dispersion curves of various waves can be obtained, as illustrated in Section 4 
for multilayered anisotropic elastic structures. 
If there is surface excitation, from Eq. (46) we have 

 1 1
0 0( )− −= + =d APU D s R s  (48) 

Further making use of the global phase relation (42), the solution of the state vector in Eq. 
(20) and the inverse Fourier transform in Eq. (10) with respect to the wavenumbers, the 
steady-state response of state variables of a layer at circular frequency ω can be expressed as 

 

{ }

i( )

2

i( )1
02

1
ˆ ˆ( , , ; ) ( ; , ; )e d d

(2 )

1
exp( ) exp( ) e d d

(2 )

JK JK
x y

JK JK
x y

k x k yJK JK JK JK JK JK
x y x y

k x k yJK JK JK KJ JK JK JK JK
x y

x y z k k z k k

z z k k

ω ω
π

π

+∞ +∞ +

−∞ −∞

+∞ +∞ +−
− − + +−∞ −∞

=

= +

∫ ∫

∫ ∫

v v

Φ Λ E Φ Λ E R s

 (49) 
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and the transient response should be obtained from the corresponding steady-state response 
by means of inverse Fourier transform with respect to frequency as 

 

{ }

i

i( )1
03

1
ˆ( , , , ) ( , , ; )e d

2
1

 exp( ) exp( ) e d d d
(2 )

JK JK
x y

JK JK JK JK JK JK JK JK t

k x k y tJK JK JK KJ JK JK JK JK
x y

x y z t x y z

z z k k

ω

ω

ω ω
π

ω
π

+∞

−∞

+∞ +∞ +∞ + +−
− − + +−∞ −∞ −∞

=

= +

∫

∫ ∫ ∫

v v

Φ Λ E Φ Λ E R s

 (50) 

Eqs. (49) and (50) can be solved numerically by the FFT technique (Guo, 2008). 

4. Numerical examples 

To verify the proposed method, we consider laminated composites with reinforced fibers 
alternately aligning along the x-axis (0°) and the y-axis (90°). The material properties of a 
lamina with fibers in 0° and 90° directions are given in Table 1.  
 

Lamina ρ  c11 c12 c13 c22 c23 c33 c44 c55 c66 

0° 1200 1.6073 0.0644 0.0644 0.1392 0.0692 0.1392 0.035 0.0707 0.0707 
90° 1200 0.1392 0.0644 0.0692 1.6073 0.0644 0.1392 0.0707 0.035 0.0707 

Note: The unit of density is kg/m3 and that of stiffness is 1011 N/m2. 

Table 1. Material properties of 0° and 90° laminas 

In the previous work (Guo & Chen, 2008a), dispersion curves have been calculated for a 

single layer of 0° lamina and a triple-layered structure with a 0°/90°/0° configuration with 

equal thickness of each lamina. The obtained results were compared with those obtained by 

the finite element stiffness method (Datta et al., 1988) (Figs. 4 and 8 for single layer and Figs. 

5 and 9 for triple layers therein). The excellent agreement validates our derivation and the 

computer codes. Nevertheless, it should be pointed out that the proposed MRRM is 

analytical, based on continuous (distributed-parameter) model. Thus, it can give more 

accurate results but at less computational expense especially in the high-frequency range. 

Recently, the characteristics of free waves in single PZT-4 and/or barium sodium niobate 

(BSN) layers have been discussed (Guo et al., 2009) for different boundary conditions, and 

dispersion curves of bi-layered, triple-layered and ten-layered piezoelectric structures 

composed of alternate PZT-4 and BSN layers with equal thickness were also presented (Guo 

& Chen, 2008b; Guo et al., 2009). 

Here in this chapter, a four-layered composite with a 0°/90°/0°/90° configuration is 

considered. The waves are assumed to propagate in the X -direction for illustration, i.e. 

xk k=  and 0yk = . Note that the formulations established in previous sections are valid for 

waves propagating in any direction in the XOY  plane. For the sake of presentation, we 

define the dimensionless quantities, including frequency Ω , wavenumber γ , wavelength L 

and phase velocity V by /(2 )sH cω πΩ = , /(2 )kHγ π= , 22 / 4 /( )L H kHπλ π= =  and 

/ sV c c= , respectively, where H  is the total thickness of the composite plate, k , λ  and c  

are respectively the wavenumber, wavelength and phase velocity, 55 0( )sc c ρ °=  is the 

shear wave velocity constant with 55 0( )c °  and 0( )ρ °  the stiffness coefficient and material 

density of 0° lamina. The thickness of the 0° and 90° laminas are denoted as 1h  and 2h , 

respectively. 
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4.1 Dispersion curves of multilayered anisotropic structures with free surfaces 

First, the laminas of the four-layered composite structure are assumed to have equal 
thicknesses and the top and bottom surfaces of the composite are assumed to be traction-
free. The dispersion curves, in terms of frequency-wavenumber spectra, wavelength-
frequency spectra and phase velocity-frequency spectra, are presented in Figs. 4(a), 4(b) and 
4(c) respectively. 
The sub-figures (a) to (c) in Fig. 4 show similar dispersion properties of free waves in the 
four-layered composite as compared with those for single and triple layers. The quasi P-SV 
and SH bulk modes, surface and interface modes and characteristic asymptotic line are 
obtained all at once from the dispersion equation by a root searching algorithm. 

4.2 Dispersion curves in high frequency range 

The frequency-wavenumber, wavelength-frequency and phase velocity-frequency spectra 

with dimensionless frequency Ω in the range of 100 to 102 are given in Figs. 5(a), 5(b) and 
5(c) respectively, which indicate the proposed formulation of MRRM can assure a good 
numerical stability in the high-frequency range. Since the wave modes at small values of 
wavelength and phase velocity are relatively intensive and difficult to differentiate within 
this frequency range, as implied in Figs. 4(b) and 4(c), the dimensionless wavelength L and 
phase velocity V are specified within 0.75~2.00 and 10~50 in Figs. 5(b) and 5(c), respectively.  

4.3 Effects of configuration on the dispersion curves 

Next, the thickness of the 0° and 90° laminas of the four-layered composite are assumed to 

be unequal in order to study the effect of configuration on the characteristics of free waves. 

The dispersion curves for cases 1 2/ 1 / 4h h =  and 1 2/ 4 /1h h =  as well as their comparison 

with those for the equal thickness case (denoted as 1 2/ 1 /1h h = ) are depicted in Fig. 6, with 

the frequency-wavenumber, wavelength-frequency and phase velocity-frequency spectra 

given in the sub-figures (a), (b) and (c) respectively.  

It is seen from Fig. 6 that the dispersion curves of a specified wave mode corresponding to 

the case 1 2/ 1 /1h h =  locate in between those for cases 1 2/ 1 / 4h h =  and 1 2/ 4 /1h h = . As 

also indicated in Fig. 6, the thickness ratio has a distinct effect on the characteristics of all 

free wave modes. The effect is however somehow larger for the higher-order wave modes 

than the lower-order ones.  

4.4 Effects of boundary conditions on the dispersion curves 

In order to show the effects of boundary conditions on the dispersion characteristics, the 
same 0°/90°/0°/90° laminated composite with equal layer thicknesses is considered for two 
different boundary conditions: one is that both the top and bottom surfaces are fixed and the 
other is that the top surface is traction-free while the bottom surface is fixed. The dispersion 
curves for the two cases are given in Fig. 7 and compared with those for a laminate with free 
surfaces. 
It is seen from Fig. 7 that some parts of the dispersion curves of certain specified modes for 

the four-layered composite with different surface conditions may coincide, but they may be 

completely different at other parts or for other modes. Fig. 7 indicates that the boundary 

conditions have a complex effect on the dispersion characteristics of free waves in 

multilayered anisotropic structures. In-depth study is needed. 
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(b) Wavelength-frequency spectra 
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Fig. 4. Dispersion curves of the 0°/90°/0°/90° laminated composite with free surfaces 
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(b) Wavelength-frequency spectra 
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(c) Phase velocity-frequency spectra 
 
Fig. 5. Dispersion curves at high frequency of the four-layered composite with free surfaces 
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(b) Wavelength-frequency spectra 
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Fig. 6. Comparisons of dispersion curves of the composite with different configurations 
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Fig. 7. Comparison of dispersion curves of the composite with different boundary conditions 
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5. Conclusion 

We present a unified formulation of the method of reverberation-ray matrix (MRRM) for the 
analysis of acoustic wave propagation in multilayered anisotropic elastic/piezoelectric 
structures based on the state space formalism and Fourier transforms in the framework of 
three-dimensional elasticity or piezoelectricity. The proposed formulation of MRRM includes 
all wave modes in the structure and possesses good numerical stability by properly excluding 
exponentially growing function and matrix inversion operation. It is therefore suitable for the 
accurate analysis of acoustic waves in complex multilayered anisotropic structures by a 
uniform computer program. In comparison with the well-known traditional transfer matrix 
method, the present MRRM is unconditionally numerically stable, irrespective of the total 
number of layers, the thickness of individual layers and the frequency. Besides, in comparison 
with the numerical methods based on discrete models, the present MRRM is based on a 
continuous model (distributed-parameter model) and gives accurate results at a much smaller 
computational cost especially in the high-frequency range. Numerical results indicate a high 
accuracy and broad versatility of the proposed formulation of MRRM for wave propagation in 
multilayered anisotropic structures with various configurations and boundary conditions in 
any frequency range. The obtained dispersion curves and their dependence on the structural 
configurations and boundary conditions shall be useful in the design and optimization of 
laminated composites and acoustic wave devices.  
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