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1. Introduction 

The bulk acoustic wave (BAW) devices first emerged in 1920s and the surface acoustic wave 

(SAW) devices first appeared in 1960s (Royer & Dieulesaint, 2000). Since invented, these 

acoustic wave devices have been improved greatly in their performance and applications, 

along with significantly extended working parameters and application areas (Royer & 

Dieulesaint, 2000; Hashimoto, 2000). Nevertheless, in the last two decades, even more 

rigorous demands such as high operational frequency, high sensitivity, high reliability, 

multiple functionality, broad environment applicability, low attenuation and low cost, arise 

from the consumer, commercial and military applications. These demands challenge the 

conventional acoustic wave devices in which single crystalline piezoelectric materials are 

used as the wave medium. Therefore, the scheme of innovative acoustic wave devices 

utilizing piezoelectric multi-layered (stratified) structures was presented to cater for these 

demands. Fortunately, the successes of thin film deposition, etching and lithography 

technologies lead to the availability of piezoelectric multi-layered structures (Benetti et al., 

2005). Recently, high-performance acoustic wave devices with multi-layered structures have 

been contrived and successfully fabricated (Kirsch et al., 2006; Benetti et al., 2008; Nakanishi 

et al., 2008; Brizoual et al., 2008). To further reduce the acoustic loss and enhance the quality 

factor of the multi-layered acoustic wave devices, Bragg Cell composed of many thin 

periodic alternate high- and low-impedance sublayers can be inserted between the 

propagation layer and the substrate. Efforts have been made on the fabrication of integrated 

piezoelectric multi-layered materials with Bragg Cell (Yoon & Park, 2000) and on the 

realization of superior multi-layered acoustic wave devices with Bragg Cell (Chung et al., 

2008), especially aiming at the film bulk acoustic resonators (FBAR).  

To ensure the well and stable performance of multi-layered acoustic wave devices, clear 

understanding of their operation status, especially the acoustic wave propagation behavior, 

is indispensable in the design process. Therefore, accurate and reliable modeling methods 
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are necessary. By far, three sorts of matrix methods, including the analytical methods based 

on continuous (distributed-parameter) models, numerical methods based on discrete 

models and analytical-numerical mixed methods, have been presented for analyzing multi-

layered acoustic wave devices. Analytical matrix methods, such as the transfer matrix 

method (TMM) (Lowe, 1995; Adler, 2000), the effective permittivity matrix method (Wu & 

Chen, 2002), the scattering matrix method (Pastureaud et al., 2002), and the recursive 

asymptotic stiffness matrix method (Wang and Rokhlin, 2002), usually give accurate results 

with low computational cost. However, some of these analytical methods are numerically 

instable. One reason is that both exponentially growing and decaying terms with respect to 

frequency and thickness are incorporated in a same matrix, and the other is that matrix 

inversion is involved in the formulation. For example, TMM ceases to be effective for cases 

of high frequency-thickness products. Tan (2007) compared most analytical methods in their 

mathematical algorithm, computational efficiency and numerical stability. Very recently, 

Guo et al. (Guo, 2008; Guo & Chen, 2008a, 2010; Guo et al., 2009) have presented a new 

version of the analytical method of reverberation-ray matrix (MRRM) formerly proposed by 

Pao et al. (Su et al., 2002; Pao et al, 2007), based on three-dimensional elasticity/ 

piezoelectricity (Ding & Chen, 2001), state-space formalism (Stroh, 1962) and plane wave 

expansion for the analysis of free waves in multi-layered anisotropic structures. The new 

formulation of MRRM deals with the exponentially growing and decaying terms separately 

and refrains from matrix inversion. It is a promising analytical matrix method, which 

bearing unconditionally numerical stability, for accurately modeling the multi-layered 

acoustic wave devices (Guo and Chen, 2008b). Numerical methods, including the finite 

difference method (FDM), the finite element method (FEM), the boundary element method 

(BEM) and the hybrid method of BEM/FEM (Makkonen, 2005), are powerful for modeling 

multi-layered acoustic wave devices with complex geometries and boundaries. However, 

they are less accurate and efficient, especially for high frequency analysis. The reason is that 

the wave media should be modeled by tremendous elements of small size to ensure 

computational convergence. Analytical-numerical mixed methods, such as the finite element 

method/boundary integral formulation (FEM/BIF) (Ballandras et al., 2004) and the finite 

element method/spectral domain analysis (FEM/SDA) (Hashimoto et al., 2009; Naumenko, 

2010), are usually powerful for modeling both the small-sized accessories and the large-

dimensioned wave media with high accuracy. They seem to be promising as long as the 

uniformity of their formulation is improved (Hashimoto et al., 2009; Naumenko, 2010). 

Although some of these matrix methods are extendable to modeling the multi-layered 

acoustic wave devices with Bragg Cell, there are few investigations focused on this subject. 

Few studies have been reported on the effects of a Bragg Cell on wave propagation 

characteristics of multi-layered acoustic wave devices either. To the authors’ knowledge, all 

existing references aimed at Bragg Cell in solidly mounted resonators. Zhang et al. (2006, 

2008) and Marechal et al. (2008) studied both the resonant transmission in Bragg Cell and 

acoustic wave propagation in multi-layered bulk acoustic devices with Bragg Cell. Tajic et 

al., (2010) presented FEM combined with BEM and/or PML to simulate the solidly mounted 

BAW resonators with Bragg Cell. The formation mechanisms of the frequency bands in 

Bragg Cell are still an untouched topic. It should be pointed out that the Bragg Cell, as a kind 

of reliable wave guiding and isolating structure, is potential for utilizing in multi-layered 
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acoustic wave devices working with various acoustic modes including Rayleigh modes, Love 

modes, Lamb modes, SH modes and bulk longitudinal/transversal modes, so as to improve 

their performances (Yoon & Park, 2000; Chung et al., 2008). Moreover, for acoustic wave 

devices working with a specific acoustic mode, other spurious modes inevitably exist. 

Therefore, for appropriately designing the multi-layered acoustic wave devices with Bragg 

Cell, modeling methods should be established by considering various wave modes and based 

on an integrated model, which reckoning on the propagation media, electrodes, Bragg Cell, 

support layer and substrate. In addition, for appropriately designing the Bragg Cell to improve 

the performance of multi-layered acoustic wave devices, the features and the mechanisms of 

frequency bands in the Bragg Cell should be studied. The influence of inserted Bragg Cell on 

acoustic wave propagation in the working layer should also be clearly revealed. 

In this chapter, the wave behavior in the Bragg Cell and the design rules of a Bragg Cell are 

studied by taking SH wave mode as illustration and by using the Method of Reverberation-

Ray Matrix (MRRM). The MRRM is also proposed for accurate analysis and design of multi-

layered acoustic wave devices with Bragg Cell, based on an integrated model involving the 

effects of electrodes, Bragg Cell, support layer and substrate on the working media. Firstly, 

the MRRM is extended to the analysis of SH wave dispersion characteristics of a ternary 

Bragg Cell, whose unit cell consisting of three isotropic layers. Based on the resultant closed-

form dispersion equations, the formation mechanisms of the SH wave frequency bands are 

revealed. The design rules of the Bragg Cell according to specific isolation requirements of 

SH waves are summarized. Secondly, the integrated model, which incorporates the effects 

of electrodes, Bragg Cell, support layer and substrate on the working piezoelectric media by 

modeling them as individual non-piezoelectric or piezoelectric layers, is proposed for 

accurately analyzing acoustic wave propagation in multilayered acoustic wave devices. The 

formulation of MRRM for the integrated multi-layered structures based on the state space 

formalism is derived, by which the propagation characteristics of waves can be investigated. 

In view of the achieved dispersion characteristics, the operating status of various acoustic 

wave devices can be decided. Thirdly, numerical examples are given to validate the 

proposed MRRM, to show the features and the formation of SH-wave bands in the Bragg 

Cell and to indicate the resonant characteristics of multi-layered acoustic wave devices. 

Finally, conclusions are drawn concerning the SH wave behavior in the Bragg Cell, the 

advantages of the integrated model and MRRM, and the resonant characteristics of multi-

layered acoustic wave devices. 

2. The features and formation of SH-wave bands in the Bragg Cell  

Consider an infinite periodic layered structure with each unit cell containing three isotropic 

elastic layers. A unit cell is depicted in Fig. 1, which can completely determine the band 

features of the infinite periodic layered structure by invoking the Floquet-Bloch principle 

(Mead, 1996). The surfaces and interfaces of the unit cell are denoted by numerals 1 to 4 

from top to bottom, and the layers are represented by numerals 1 to 3 from top to bottom. 

Due to the isotropy of the layers, the in-plane wave motion is decoupled from the out-of-

plane one. We limit our discussion to the out-of-plane (transverse) wave motion, i.e. only 

the SH type mode is present. 
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Figure 1. The schematic of the unit cell of a periodic ternary layered structure and its description in the 

global coordinates 

2.1. SH wave dispersion characteristics of the Bragg Cell 

Within the framework of the method of reverberation-ray matrix (MRRM) (Su et al., 2002; 

Pao et al., 2007; Guo, 2008), constituent layers of the unit cell are individually described in 

the corresponding local dual coordinates. Fig. 2 depicts the local dual coordinates of a 

typical layer j  ( 1,2,3j  ) with its top and bottom surfaces denoted respectively as J ( j ) 

and K  ( +1j ), and the SH wave amplitudes along the thickness in the typical layer j  as the 

wavenumber along X  is k  for all of the constituent layers. Meanwhile, superscripts JK or 

KJ will be attached to physical variables of the typical layer j , which is also called as JK  or 

KJ  according to the related coordinates ( , , )JK JK JKx y z  or ( , , )KJ KJ KJx y z , to indicate the layer 

and its pertaining coordinate system. The displacement and stress are deemed to be positive 

as they are along the positive direction of the pertaining coordinates.  

 

Figure 2. Description of a typical constituent layer j  of the unit cell in local dual coordinates 
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According to the elastodynamics of linear isotropic media (Eringen & Suhubi, 1975), the 

plane wave solutions to the out-of-plane displacement v  and shear stress zy  in any 

constituent layer JK (or j) in its pertaining coordinates ( , , )JK JK JKx y z  can be expressed as 

follows (with superscripts JK omitted)  

 i ii( ) i( )
3 3

ˆ( , , ) ( )e ( e e )e ,s sz zt kx t kxv x z t v z a d
       (1) 

 i ii( ) i( )
3 3 3

ˆ( , , ) ( )e ( e e )e ,s sz zt kx t kx
zy zyx z t z a d          (2) 

where ˆ( )v z  and ˆ ( )zy z  signify the corresponding quantities in the frequency-wavenumber  

( k  ) domain (i.e. the transformed quantities), i 1   is the imaginary unit, s   

( 2 2
sk k    or 2 2

sk k   ) and /s sk c  are respectively the z -direction shear 

wavenumber and the total shear wavenumber with   being the circular frequency and 

/sc G   the shear wave velocity, 3 i sG   is the shear stress coefficient, constants G  and 

  are respectively the shear modulus and the mass density. It is clearly seen that the terms 

with 3a  and 3d  at the right-hand sides of Eqs. (1) and (2) signify backward and forward 

traveling waves along the thickness coordinate, i.e. the arriving and departing waves relative 

to the surface J, with 3a  and 3d  being the corresponding undetermined wave amplitudes. 

First, we consider the spectral equations within the layers. The transformed displacement v̂  

(stress ˆ
zy ) at an arbitrary plane JKz  of any layer j  expressed in one coordinate system 

( , , )JK JK JKx y z  should be compatible with that expressed in the other coordinate system 

( , , )KJ KJ KJx y z , due to the uniqueness of the physical essence. Referring to the sign 

convention of displacement (stress), we have  

 ˆ ˆ( ) ( )JK JK KJ JK JKv z v h z  , (3) 

 ˆ ˆ( ) ( )JK JK KJ JK JK
zy zyz h z    . (4) 

Substituting Eq. (1) into Eq. (3) and Eq. (2) into Eq. (4), and noticing the functions ie sz  and 
ie sz  are nonzero for finite s  and z , one obtains the phase relation of layer j (JK or KJ) 

 i

3 3 3 3e ( , )
  
JK JK
s hKJ JK KJ JKa d P k d  (5) 

where JK KJ
s s sj    , JK KJ

jh h h   and 3 3 3
JK KJ

jP P P   are the wavenumber along z  

direction, the thickness and the phase coefficient of layer j (JK or KJ), respectively. It is noted 

that the thickness wavenumber sj  can always be chosen to satisfy Re[ i ] 0sj jh  , so that 

no exponentially growing function is included in the phase relation.  
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Second, we consider the spectral equations at the interfaces between adjacent layers. The 

compatibility of displacements and equilibrium of stresses at the interfaces 2 and 3 are 

expressed as 

 21 23 21 23 32 34 32 34ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ(0) (0), (0) (0) 0, (0) (0), (0) (0) 0zy zy zy zyv v v v          (6) 

Substituting Eqs. (1) and (2) into Eq. (6), one obtains the scattering relations at interfaces 2  

and 3  

 
21 21 23 23 21 21 21 21 23 23 23 23
3 3 3 3 3 3 3 3 3 3 3 3

32 32 34 34 32 32 32 32 34 34 34 34
3 3 3 3 3 3 3 3 3 3 3 3

0, 0

0, 0

a d a d a d a d

a d a d a d a d

   

   

       

       
 (7) 

Third, we consider the spectral equations at the top and bottom surfaces. The Floquet-Bloch 

principle of periodic structures (Brillouin, 1953; Mead, 1996) requires that the displacement 

(stress) of bottom layer at the bottom surface 4 should relate to that of top layer at the top 

surface 1  by 

 i i43 12 43 12ˆ ˆ ˆ ˆ(0) e (0), (0) e (0)qh qh
zy zyv v      (8) 

where 
3

1 jj
h h


  is the thickness of the unit cell, q  is the wavenumber of the characteristic 

waves in the periodic ternary layered media. The real part Rq h  and the imaginary part Iq h  

of dimensionless wavenumber qh  denote the phase constant and the attenuation constant 

of the characteristic wave, respectively (Mead, 1996). Substitution of Eqs. (1) and (2) into Eq. 

(8) gives the scattering relations at surfaces 1  and 4  

 i i i i12 12 43 43 12 12 12 12 43 43 43 43
3 3 3 3 3 3 3 3 3 3 3 3e e 0, e e 0qh qh qh qha d a d a d a d            (9) 

Finally, introducing the phase relations of all layers as given in Eq. (5) to the scattering 

relations of all interfaces and surfaces as given in Eqs. (7) and (9), we obtain the system 

equations with all the departing wave amplitudes as basic unknown quantities 

 

21 23 12
3 3 3

21 21 21 23 23 23 21
3 3 3 3 3 3 3

32 34 23
3 3 3

32 32 32 34 34 34 32
3 3 3 3 3 3 3

i i 12 43 34
3 3 3

i i 4312 12 12 43 43 43
33 3 3 3 3 3

1 1 0 0

0 0

0 0 1 1

0 0

e e 0 0 1

e e 0 0

qh qh

qh qh

P P d

P P d

P P d

P P d

P P d

dP P

   

   

   

    
  
   
  

   
     
    
    

0

0

0

0

0

0

or

( , , )d k q

           
  
  
  

   

R d 0

 (10) 

where 3 3 3
JK KJ

j     ( 1 1,2,3J K j    ) is the shear stress coefficient of layer j , dR  is 

the system matrix, and d  is the global departing wave vector. 
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The dispersion equation governing the characteristic SH waves in periodic ternary layered 

media is obtained by vanishing of the determinant of system matrix  

 det[ ( , , )]d k q R 0 . (11) 

Further expansion of the determinant in Eq. (11) gives the closed-form dispersion relation of 

characteristic SH waves in periodic ternary layered media as follows 

 

1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

2 2

i i i 2 i
31 32 33

2i 2 i 2 ii
31 32 33

2 i 2 i 2 ii2 2
31 32 33

2 ii2 2
32 33 31

8 e e e (1 e )

2 e (1 e )(1 e )(1 e )

( ) ( ) e (1 e )(1 e )(1 e )

( ) ( ) e (1 e )(

s s s

s s s

s s s

s

h h h qh

h h hqh

h h hqh

hqh

  

  

  



  

  

  

  

  

  

  





   

      
    

3 3 1 1

3 3 1 1 2 2

2 i 2 i

2 i 2 i 2 ii2 2
33 31 32

1 e )(1 e )

( ) ( ) e (1 e )(1 e )(1 e ) 0.

s s

s s s

h h

h h hqh

 

    

 

  

 

       

 (12) 

Dispersion equation (12) assures unconditionally numerical stability because Re[ i ] 0sj jh   

is already guaranteed by the properly established phase relation and Re[i ] 0qh   can also be 

guaranteed by properly specifying q  in the solving process, since q  and q  signifying 

wavenumbers in opposite direction should give the same propagation characteristics. Due 

to 
i

e 0sj jh
  and ie 0qh  , Equation (12) can be simplified, by virtue of relations between 

trigonometric functions and exponential functions, to 

 

31 32 33 1 1 2 2 3 3

2 2
31 32 33 1 1 2 2 3 3

2 2
32 33 31 2 2 3 3 1 1

2 2
33 31 32 3 3 1 1

2 cos( ) cos( )cos( )cos( )

( ) ( ) sin( )sin( )cos( )

( ) ( ) sin( )sin( )cos( )

( ) ( ) sin( )sin( )cos(

s s s

s s s

s s s

s s

qh h h h

h h h

h h h

h h

     

     

     

    

   
   
   
    2 2 ).s h

  (13) 

Define  

 2 2 2
3 / i / /SHj j sj j j j jZ G G k G           (14) 

as the characteristic impedance of SH wave in layer j , which is dependent on not only the 

shear modulus jG  and mass density j , but also the frequency   and wavenumber k . 

Therefore, the characteristic impedance of SH wave in an isotropic layer is not a constant 

and can be imaginary below the cutoff frequency of SH wave. It is very different from the 

characteristic impedance of bulk shear wave Tj j jZ G  in an isotropic medium j , which 

is a real-valued constant. But SHjZ  equals to TjZ  as 0k  . If 1 2 3 0SH SH SHZ Z Z  , i.e. 

1 2 3( )( )( ) 0s s skc kc kc      , the dispersion equation (13) is automatically satisfied 

regardless of qh . This case merely gives the cutoff frequency of SH wave mode c sk c   
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within one of the constituent layers, and we shall not discuss it any further. Otherwise for 

1 2 3 0SH SH SHZ Z Z  , the dispersion relation is further simplified to 

1 1 2 2 3 3 1/2 2/1 1 1 2 2 3 3

2/3 3/2 2 2 3 3 1 1 3/1 1/3 3 3 1 1 2 2

1
cos( ) cos( )cos( )cos( ) ( )sin( )sin( )cos( )

2
1 1

( )sin( )sin( )cos( ) ( )sin( )sin( )cos( ),
2 2

s s s s s s

s s s s s s

qh h h h F F h h h

F F h h h F F h h h

     

     

  

   
 (15) 

where 

  3

/
3

i /
, 1,2,3,

i /

j sj j sj j SHj

j j
j sj j sj j SHj

G G Z
F j j j j

G G Z

   

   
     

 
     

          (16) 

signifies the contrast of characteristic impedances of SH waves in layer j  and layer j .  

2.2. Formation mechanisms of SH-wave bands in the Bragg Cell 

Based on Eq. (15), in which 1 2 3 0SH SH SHZ Z Z   is implied, in what follows we will discuss the 

formation mechanisms of frequency bands of SH waves in periodic ternary layered media, 

according to the following two cases for the characteristic impedances of SH waves in the 

three constituent layers of the unit cell. 

1. 1 2 3SH SH SHZ Z Z    

Owing to / / 1j j j jF F      ( , 1,2,3j j   , j j  ), the dispersion relation (15) is reduced to 

 
1 1 2 2 3 3

1 2 3 1 2 3
1 2 3

cos( ) cos( ) cos( )

cos( ) cos[ ( )] cos( ),

s s s se

SH SH SH SH
SH SH SH

qh h h h h

h h h T T T T
c c c

   
    

   

      
 (17) 

where 3
1( ) /se j sj jh h   is the equivalent wavenumber of SH wave in the unit cell, 

/SHj j SHjT h c  is the parameter reflecting the characteristic time as SH wave traverses the 

thickness of constituent j, but may be imaginary number below the cutoff frequency c , 

3

1SH SHjj
T T


  is the parameter reflecting the characteristic time as SH wave traverses the 

thickness of the unit cell. Equation (17) has the solution 

 2 2 ,se SH

m m
qh h T

n n
          (18) 

where m  and n  are arbitrary integers corresponding to positive and negative signs, 

respectively . Equation (18) indicates that when all the three constituent layers have the 

same characteristic impedance of SH wave, there is no bandgap above the maximum cutoff 

frequency max 1 2 3max( , , )c c c c    . The dispersion spectra are completely determined by 
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the fundamental dispersion curve of the equivalent SH wave in the unit cell due to the zone 

folding effect (Brillouin, 1953) with the characteristic time of the unit cell being the essential 

parameter. In other words, the contrast of characteristic impedances determines whether the 

band gaps exist or not above maxc , and the characteristic time of the unit cell decides the 

dispersion spectra of the periodic layered media as no bandgap exists above maxc . 

 

2. ,SHj SHj SHj SHjZ Z Z Z    (   SHj SHjZ or Z   , , , 1 or 2 or 3j j j   , j j j   ) 

 

If SHj SHjZ Z  , then the dispersion relation (15) is reduced to 

 

 
/ /

/ /

1
cos( ) cos( )cos( ) ( )sin( )sin( )

2
1

cos( )cos( ) ( )sin( )sin( ),
2

sj j sj j sj j j j j j sj j sj j sj j

sj j si i j i i j sj j si i

qh h h h F F h h h

h h F F h h

     

   

             

  
 (19) 

which is the dispersion relation for periodic binary layered media already obtained (Shen & 

Cao, 2000; Wang et al., 2004). ( ) /si sj j sj j ih h h        and i j jh h h    are the wavenumber 

along the z -direction and the thickness of the new equivalent layer i  composed of the two 

constituent layers with identical characteristic impedance of SH wave. If SHj SHjZ Z  , then 

the dispersion relation should be the general form of Eq. (15).  

In any circumstances, as maxc   the characteristic impedances and the wavenumbers 

along the z -direction of SH waves in the constituent layers will be positive real number. 

Thus, we have  

 

 / / / /
2/ /

1 1 1
1 1 1 2 ,

1 1 1
b

j j j j j j
bj j j

F F j j   
  



     
  

              
     (20) 

where /j  , / j  and j   are real numbers, /0 1j    ( / 1j  ) when / 1jF   , /0 1j   

( / 1j   ) when / 1jF  , / /min( , ) (0,1)j j j      . Similarly, we have 

 / /
2

1
1 2 ,

1
b

j j j j j j j j
bj j

F F  




       
  

     
   (21) 

where 0j j     as SHj SHjZ Z  , 0 1j j     as SHj SHjZ Z  . Therefore, the dispersion 

equations (15) and (19) can be rewritten uniformly as  
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 (22) 

which indicates that the band structures of the periodic ternary layered media are not only 

determined by the fundamental dispersion curve of the equivalent SH wave according to 

zone folding effect, but also influenced by three disturbance terms with disturbing functions 

sin( )sin( )cos( )sj j sj j sj jh h h       (or sin( )sin( )cos( )SHj SHj SHjT T T    , , , 1,2,3j j j   , j j j   ) 

and disturbing amplitudes 2 / [2(1 )]j j j j     . The value of the right-hand side of Eq. (22) 

determines the demarcation of frequency bands: 1  gives the dividing lines of pass-bands 

and stop-bands; 0  gives the central frequencies of pass-bands; those between 1  and 1  

give the pass-bands; and all other values give the stop-bands. The characteristic time of the 

unit cell, the characteristic times of constituent layers and the contrasts of characteristic 

impedances of SH waves in the constituent layers are the essential parameters for the band 

structure formation, which determine the shape of the dispersion curves of the equivalent 

SH wave (the pre-disturbed baselines), the shapes of the disturbing functions, and the 

amplitudes of the disturbance terms, respectively. When the disturbing functions satisfy 

sin( )sin( )cos( ) 0sj j sj j sj jh h h        ( sin( )sin( )cos( ) 1sj j sj j sj jh h h        ), the band structures 

coincide exactly with (deviate most from) the fundamental and derivative dispersion curves 

of the equivalent SH wave in the unit cell. The corresponding points on the dispersion 

curves are called as the coincident (separating) points. The frequency equation can be 

simplified to ( , , 1,2,3j j j   , j j j   ) 

 
 ,  and are integers or

(2 1) / 2,  (2 1) / 2,  (2 1) / 2

sj j j sj j j j j

sj j j sj j j sj j j

h g h g g g

h g h g h g

   

     
       

     

 

     
  (23) 

 ,  (2 1) / 2,  (2 1) / 2sj j j sj j j sj j jh g h g h g               ,  (24) 

for coincident and separating points, respectively.  
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In physics, at any interface J  of the unit cell there are one incident wave iJw  and one 

reflected wave rjw  arising from the next interface except that there is no reflection at the 

interface where the two constituent layers with identical characteristic impedances 

connected. sj jh , sj jh    and sj jh    denote the phase changes as SH wave passes through 

layer j , j  and j , respectively. Thus, the former formula in Eq. (23) corresponds to the 

constructive interference condition of the incident wave and reflected wave at two 

interfaces, and the latter formula in Eq. (23) corresponds to the destructive interference 

condition at three interfaces. Equation (24) corresponds to destructive interference condition 

of incident wave and reflected wave at two interfaces and constructive interference 

condition at one interface. Therefore, it is concluded that the frequency bands are formed 

physically as a result of interference phenomenon as waves transmit and reflect in the 

constituent layers of a periodic ternary layered media. The specified combination of exact 

constructive and destructive interferences of the incident and reflected waves at some 

interfaces makes the equivalent SH wave travel through the unit cell without any change of 

its dispersion characteristic or be completely prohibited to travel. The specified combination 

of near constructive and destructive interferences of the incident and reflected waves at 

some interfaces makes the equivalent SH wave be capable of going through the unit cell 

with a change of its dispersion characteristic or be attenuated. The exact constructive and 

destructive interferences specified by Eq. (23) and Eq. (24) are only possible for special 

periodic ternary layered media with the characteristic times of constituent layers satisfying  

 : : or : : (2 1) : (2 1) : (2 1)SHj SHj j j SHj SHj SHj j j jT T g g T T T g g g              (25) 

 : : : (2 1) : (2 1)SHj SHj SHj j j jT T T g g g       (26) 

However, the near constructive and destructive interferences specified by Eq. (23) and Eq. 

(24) can occur in general periodic ternary layered media.  

In summary, the occurrence of some specified combination of exact or near constructive and 

destructive interference phenomena in the unit cell makes the equivalent SH wave travel 

through the unit cell and gives birth to the pass-bands, whereas the occurrence of other 

specified combination of exact or near destructive interference makes the equivalent SH wave 

unable to pass through the unit cell and brings about the stop-bands. Although the above 

discussion on the formation mechanisms of SH-wave bands is based on the periodic ternary 

layered structure, it is actually extendable to SH wave in general periodic layered media. 

2.3. Design rules to the Bragg Cell concerning with SH wave bands 

The discussion of formation mechanisms of SH wave bands in the layered Bragg Cell 

indicates that the contrasts of characteristic impedances of the constituent layers, the 

characteristic time of the unit cell and the characteristic times of the constituent layers are 

three kinds of essential parameters, which influence the band properties. First, the contrasts 

of characteristic impedances decide whether the stop-bands other than that due to SH wave 
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cutoff property exist or not. When the characteristic impedances of all the constituent layers 

are identical, any SH waves above the maximum cutoff frequency can propagate in the 

periodic layer without attenuation and no stop-bands other than that due to the SH wave 

cutoff property exist. In other cases, stop-bands exist above the maximum cutoff frequency, 

and the contrasts of characteristic impedances decide the widths of the frequency bands. 

The characteristic time of the unit cell decides the slopes of the dispersion curves of 

equivalent SH waves, thus it definitely specifies the number of pass-bands/stop-bands in a 

given frequency range. The characteristic times of the constituent layers mainly decide the 

mid-frequencies of the frequency bands. It should be pointed out that the mass densities and 

shear moduli of constituent layers affect all the three kinds of essential parameters, while the 

thicknesses of the constituent layers only influence the characteristic times of the unit cell 

and of the constituent layers. These rules can be used for the design of layered Bragg Cells 

according to the SH-wave bands requirements.  

2.4. Numerical examples  

In this section, the above proposed MRRM for dispersion characteristic analysis and the 

mechanisms for band structure formation of SH waves in periodic ternary layered media are 

validated by considering a periodic ternary layered structure with the unit cell consisting of 

one Pb layer in the middle and two epoxy layers at the up and down sides. The thickness of 

the Pb layer is 10mm and that of the epoxy layers is 5mm. The material parameters of Pb 

and epoxy including the Young’s modulus, shear modulus and mass density are 

40.8187PbE  GPa, 4.35005epoxyE  GPa, 14.9PbG  GPa, 1.59epoxyG  GPa, 11600Pb 

kg/m3 and 1180epoxy  kg/m3. The band structures of SH waves in this periodic ternary 

layered medium are calculated by the formulation presented in Section 2.1. For the 

convenience of presentation, the results are represented by the dimensionless wavenumbers 

/kh   and /qh   with 0.02h  m being the total thickness of the unit cell, and the 

engineering frequency / 2f   . 

We first consider the property of SH-wave band structures in the exemplified periodic 

ternary layered medium. Figure 3 gives the band structures of SH waves below 140 kHz 

represented as various forms of graphs. Figure 3(a) depicts the phase constant surfaces in 

the pass-bands as the dimensionless wavenumbers /kh   and /qh   are in the range of 

[ 2,2] . Figures 3(b) to 3(d) describe both the phase constant spectra in pass-bands (i.e. the 

relation between f  and /Rq h  ) and the attenuation constant spectra in stop-bands (i.e. the 

relation between f  and /Iq h  ) as the dimensionless wavenumber /kh   is 1.0 , 0.5  and 

0.0 , respectively. Figure 3(e) plots the relation between f  and /k h   when /qh   is 

specified as 10.0 2I , 20.5 2I  and 31.0 2I  with 1I , 2I  and 3I  being arbitrary integers. To 

validate our obtained results, in Fig. (3d) the phase constant spectra as / 0kh    are 

compared to the corresponding results calculated by Wang et al. (2004), and in Fig. (3e) the 

spectra of f  versus /k h   as 1/ 0 2qh I    and 3/ 1 2qh I    are compared to their 

counterparts calculated by Wang et al. (2004).  
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Figure 3. The band structures of SH waves below 140 kHz in the periodic ternary layered medium 

consisting of one Pb layer and two epoxy layers 

It is seen from Fig. 3(a) that the phase constant surfaces in the pass-bands are symmetrical 

with respect to the vertical plane / 0kh   , which indicates that the SH waves along the 

positive and the negative X  directions have identical propagation properties. This is due to 

the symmetry of structural configuration and material parameters of the exemplified 

periodic ternary layered medium with respect to YOZ  plane. Likewise, the phase constant 

surfaces in Fig. 3(a) and the attenuation constant spectra in Figs. 3(b) to 3(d) are also 

symmetry with respect to / 0qh   , which indicates that the upward and downward 

characteristic SH waves have identical band structures. In addition, the phase constant 

surfaces in Fig. 3(a) are periodical with respect to /qh   as the minimum positive period 

being / 2qh   , which indicates the periodicity of propagating characteristic SH waves 

along the thickness of the unit cell and reflects the zone folding effect of periodic structures. 
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Figs. 3(b) to 3(d) signify that for any /kh  , with the increasing of frequency the phase 

constant spectra and the attenuation constant spectra of characteristic SH waves in periodic 

ternary layered media occur alternately, i.e. the pass-bands and the stop-bands occur 

alternately. However, the attenuation spectra (the stop band) will advent first for any /kh   

except for / 0kh   . It should be noted that as / 0kh   , the first stop band is formed due 

to the cutoff property of the SH waves in the constituent layers. For any /kh  , the 

attenuation constant spectra in form of closed loops with phase 0  and phase   appear 

alternately. It indicates from Figs. 3(b) to 3(e) that for any /kh  , the frequencies as 

/ 0qh    and those as / 1qh   , which are respectively identical to those as 1/ 0 2qh I    

and those as 3/ 1 2qh I   , are the demarcations between the pass-bands and the stop-

bands. The ranges between two adjacent bounding frequencies, with one corresponding to 

1/ 0 2qh I    and the other corresponding to 3/ 1 2qh I    are pass-bands, whereas the 

ranges between two adjacent bounding frequencies with both corresponding to 

1/ 0 2qh I    or 3/ 1 2qh I    are stop-bands. Fig. 3(e) shows the f - /k h   spectra as 

/qh   takes any other real value lie in the pass-bands between the f - /k h   spectra as 

/ 0qh    and those as / 1qh   . With the increasing of /k h  , the demarcating 

frequencies of the corresponding frequency-bands rise. The first demarcation frequency 

increases most obviously with the rise of /k h  . 

In Fig. 3(d), the comparison between the phase constant spectra obtained by our proposed 

method and those calculated by Wang et al. (2004) indicates good agreement. In Fig. 3(e), 

the comparison between the f - /k h   spectra obtained by our method and those 

calculated by Wang et al. (2004) also manifests close coincidence. Furthermore, the f -

/k h   spectra corresponding to 1/ 0 2qh I    and 3/ 1 2qh I    in our results are 

explicitly separated, which clearly denotes the pass-bands and stop-bands. All these 

validate the accuracy and excellence of the proposed MRRM for dispersion characteristic 

analysis.  

Let us now consider the formation of SH-wave band structures in the exemplified periodic 

ternary layered structure. We plot in Figs. (4a) and (4b) the phase and the attenuation 

constant spectra of characteristic SH waves together with the dispersion curves of the 

equivalent SH waves in the exemplified periodic ternary layered structure, as / 0.0kh    

and / 0.5kh   , respectively, for illustrating the close relation between the dispersion 

curves of the equivalent SH waves and the band structures of characteristic SH waves. The 

fundamental real-part and the imaginary-part dispersion curves of the equivalent SH waves 

are obtained directly from the definition 3 2 2 2
1 /se j j sjh h c k   , while the derivative 

real-part dispersion curve of the equivalent SH waves are attained by virtue of the zone 

folding effect.  
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Figure 4. The band structures of characteristic SH waves and the dispersion curves of equivalent SH 

waves below 140 kHz in the periodic ternary layered medium consisting of one Pb layer and two epoxy 

layers 

It is clearly seen from Figs. (4a) and (4b) that above the maximum cutoff frequency maxc  (

max min0c c    while / 0.0kh   ), the dispersion curves of the equivalent SH waves have 

only the real part. In this case the fundamental and derivative dispersion curves of 

equivalent SH waves serve as the baselines during the band-structure formation of 

characteristic SH waves. In the forming process of the band structures, the dispersion curves 
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first separate with respect to frequency at the intersections 2 2se seh m h n I          ( I  

is an arbitrary integer) representing the boundaries of the Brillouin zone to give the stop-

bands, in which the attenuation constant spectra with phase 0  and phase   corresponding 

to even numbers and odd numbers of I , respectively. The intermediate segments of 

dispersion curves between the adjacent intersections are disturbed to form the phase 

constant spectra in the pass-bands. Figure (4b) also shows below the minimum cutoff 

frequency minc  as / 0.0kh   , the dispersion curves of the equivalent SH waves have only 

the imaginary part. In this case the dispersion curve serve as the baseline during the 

formation of the attenuation constant spectrum in the first stop-band, which is emerged due 

to the cutoff property of the SH waves in the constituent layers. 

It should be emphasized that although the above example is a simple periodic ternary 

layered structure, the obtained property and formation of SH wave band structures are in 

fact also applicable to SH waves in all periodic layered isotropic media.  

3. Analysis of acoustic waves in integrated multi-layered structures 

Various multi-layered acoustic wave devices with Bragg Cell can be modeled by the multi-

layered structures of infinite lateral extent depicted in Fig. 5, which including both non-

piezoelectric layers and piezoelectric layers. Usually, the electrodes, support layers and 

substrate consist of elastic (non-piezoelectric) layers. The propagation media consist of  

 

Figure 5. The schematic of multi-layered structures consisting of n layers for modeling the multi-

layered acoustic wave devices 

piezoelectric single-layer or multi-layers. The Bragg Cell can currently be made of alternate 

elastic layers such as W and SiO2 or alternate elastic and piezoelectric layers such as SiO2 
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and AlN (Lakin, 2005), and may in the future be made of alternate piezoelectric layers. 

Assume in the multi-layered model, each one of the n  layers is homogeneous and the 

adjacent two layers are perfectly connected. To establish a general formulation for the analysis 

of various multi-layered acoustic wave devices with Bragg Cell, each layer in the multi-layered 

model is assumed as arbitrarily anisotropic. From up to down, the layers are denoted in order 

by numbers 1 to n , and the top surface, interfaces and bottom surface in turn are denoted by 

numbers 1 to 1N   ( N n ). Thus, the upper and lower bounding faces of an arbitrary layer 

j  ( 1,2, ,j n  ) are denoted by J  ( J j ) and K  ( 1K j  ), respectively, and the layer j  will 

also be referred to as JK  or KJ . Moreover, a global coordinate system ( , , )X Y Z  with its origin 

located on the top surface and the Z -axis along the thickness direction, as shown in Fig. 5, is 

utilized to describe the integrated multi-layered structure. 

3.1. Modeling of the non-piezoelectric layers (electrode, Bragg Cell, support 

layer and substrate) 

Based on the three-dimensional linear elasticity (Stroh, 1962), the equations governing the 

dynamic state of a homogeneous, arbitrarily anisotropic elastic medium in absence of body 

forces can be written as 

 , , ,( ) / 2,ij ijkl k l l k ij j ic u u u       (27) 

where the comma in the subscripts and the dot above the variables imply spatial and time 

derivatives, 
ij  and iu  are respectively the stress and the displacement tensors, 

ijklc  denotes 

the elastic constant tensor having at most 21 independent components, and   is the 

material density.  

In the case of layer configuration, the state space formalism (Tarn, 2002a) can be adopted to 

describe mathematically the dynamic state of the medium. Referring to the global 

coordinate system ( , , )X Y Z  in Fig. 5, we divide the stresses into two groups: the first 

consists of the components on the plane of constantZ  , and the second consists of the 

remaining components. The combination of the displacement vector T[ , , ]u u v wv  and the 

vector of first group stresses T[ , , ]zx zy z   v  gives the state vector 
T T T[( ) ,( ) ]u v v v . 

3.2. Modeling of the piezoelectric layers (propagation media and Bragg Cell) 

According to the three-dimensional linear theory of piezoelectricity (Ding & Chen, 2001), the 

dynamic governing equations for the arbitrarily anisotropic piezoelectric medium in 

absence of both body forces and free charges are 

 
, , , ,

, , , ,
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( ) / 2 0

ij ijkl k l l k kij k ij j i

i ikl k l l k ik k i i

c u u e u
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   

 
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 

     
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where iD  and   are respectively the electric displacement and the electric potential tensors, 

kije  and ik  are the piezoelectric and the permittivity constant tensors having at most 18 

and 6 independent components, respectively, and all the remaining symbols have the same 

meanings as the corresponding ones in Eq. (27). It is seen from Eq. (28) that the coupling 

between the mechanical and electrical fields is considered.  

Similar to the arbitrarily anisotropic elastic layer, an arbitrarily anisotropic piezoelectric 

layer can also be described mathematically by the state space formalism (Tarn, 2002b). In 

view of the global coordinate system ( , , )X Y Z  in Fig. 5, the state vector is also represented 

as T T T[( ) ,( ) ]u v v v , but with T[ , , , ]u u v w v  being the generalized displacement vector 

and T[ , , , ]zx zy z zD   v  the generalized stress vector of the first group.  

3.3. The state equations and solutions of non-piezoelectric and piezoelectric 

layers  

By virtue of the triple Fourier transform pairs as follows 
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 (29) 

the dynamic governing equations (27) and (28) in the time-space domain can be transformed 

into those in the frequency-wavenumber domain. The quantity   can be interpreted as the 

circular frequency, xk  and yk  are interpreted as the wavenumbers in the x  and y  

directions, respectively. i 1   is the unit imaginary. The z -dependent variable in the 

frequency-wavenumber domain is indicated by an over caret. Adopting the state space 

formalism (Tarn, 2002a, 2002b), we can reduce the transformed dynamic governing equations 

of a material layer corresponding to Eqs. (27) and (28) in right-handed coordinate systems, by 

eliminating the second group of generalized stresses, to the state equation as follows 

 
ˆd ( )

ˆ ( )
d

z
z

z


v
Av  (30) 

It is noted that the transformed state vector ˆ ( )zv  contains / 2vn  generalized displacement 

components and / 2vn  generalized stress components, with 6vn   and 8vn   for a non-

piezoelectric (elastic) layer and a piezoelectric layer, respectively. Thus, the state equation is 

a system of vn  first-order ordinary differential equations. The v vn n  coefficient matrix A  

of the state equation can be written in a blocked form 

 
 

1 1
33 33

2 2 2 T 1 T 1
11 22 12 21 33 33
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ix y x yk k k k
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where 31 32( )x yk k  W G G . Assuming that the correspondence between the digital and 

coordinate indices follows 1 x , 2 y  and 3 z , we have  

 

1 1 1 2 1 3

2 1 2 2 2 3 3

3 1 3 2 3 3

,
k l k l k l
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G M I  (32) 

for a layer of arbitrarily anisotropic elastic material, and  
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for a layer of arbitrarily anisotropic piezoelectric material, with 3I  the identity matrix of 

order 3.  

According to the theory of ordinary differential equation (Coddington & Levinson, 1955), 

the solution to the state equation (30) can be expressed, in a form of traveling waves, as  
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Φ Φv Φ d0 Λ

 (34) 

where exp( )  denotes the matrix exponential function, Λ  and Φ  are respectively the 

v vn n  diagonal eigenvalue matrix and square eigenvector matrix of the coefficient matrix 

A , w  is the vector of undetermined wave amplitudes with vn  components. Λ  ( a an n ) 

and Λ  ( d dn n ) are the diagonal sub-matrices of Λ  corresponding respectively to the 

arriving wave vector a  with an  wave amplitudes and the departing wave vector d  with 

dn  wave amplitudes. Φ  ( v an n ) and Φ  ( v dn n ) are the corresponding sub matrices of 

Φ . uΦ  and Φ  are the / 2v vn n  sub-matrices of Φ  corresponding to the generalized 

displacement and stress vectors, respectively. The sub-matrices uΦ ,  Φ , uΦ  and  Φ  

are defined accordingly. It should be noted that a  consists of those wave amplitudes iw  in 

w , which correspond to the eigenvalues i  satisfying Re( ) 0i   or 

Re( ) 0,Im( ) 0i i     , and the remaining wave amplitudes in w  form d . Obviously, we 

always have T T T[ , ]w a d  and a d vn n n  . 
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3.4. Reverberation-ray matrix analysis of integrated multi-layered structures 

3.4.1. Description of the structural system 

Within the framework of MRRM, the physical variables associated with any 

surface/interface J  ( 1,2, , 1J N  ) will be described in the global coordinate system 

( , , )X Y Z  as shown in Fig. 5 for the convenience of system analysis, and will be affixed with 

single superscript J  to indicate their affiliation. The physical variables associated with any 

layer j  (i.e. JK  or KJ , 1,2, ,j n  )  will be described in the local dual coordinates 

( , , )JK JK JKx y z  or ( , , )KJ KJ KJx y z  as shown in Fig. 6 for the sake of member analysis, and will 

be affixed with double superscripts JK  or KJ  to denote the corresponding coordinate 

system and the pertaining layer. To make the sign convection clear, physical variables are 

deemed to be positive as it is along the positive direction of the pertinent coordinate axis. 
 

 

Figure 6. Description of a typical layer j  within the multi-layered model in local dual coordinates 

3.4.2. Traveling wave solutions to the state variables 

It is seen from Fig. 6 that the local dual coordinates are both right-handed, thus the state 

equations for an arbitrary layer j  (i.e. JK  or KJ ) in ( , , )JK JK JKx y z  and ( , , )KJ KJ KJx y z  have 

the same form as Eq. (30). The traveling wave solutions to them can be written according to 

Eq. (34) as follows  
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3.4.3. Scattering relations from coupling conditions on surfaces and at interfaces 

Consider the compatibility of generalized displacements and the equilibrium of generalized 

stresses on surfaces and at interfaces. The spectral coupling equations on the top surface 1 , 

at any interface J  and on the bottom surface 1N   are expressed respectively as 

 12 1 12 1ˆ ˆ ˆ ˆ(0) , (0)u uE E   v v v v 0  (37) 

 ˆ ˆ ˆ ˆ ˆ ˆ(0) (0) , (0) (0)JI JK J JI JK J
u u u uE E       T v v v T v v v 0  (38) 

 
( 1) ( 1) ( 1) ( 1)ˆ ˆ ˆ ˆ(0) , (0)N N N N N N

u u uE E  
     T v v T v v 0  (39) 

where 1ˆ
uEv , ˆ J

uEv  and ( 1)ˆ N
uE

v  are the generalized displacement vectors of top surface 1 , 

interface J  and bottom surface 1N  , respectively, 1ˆ
Ev , ˆ J

Ev  and ( 1)ˆ N
E
v  are the  

corresponding generalized stress vectors, u T T  are the coordinate transformation matrix  

that equal to 1,1, 1     for non-piezoelectric (elastic) layers and 1,1, 1, 1      for 

piezoelectric layers. Here and after     denotes the (block) diagonal matrix with elements 

(or sub-matrices) only on the main diagonal.  

It should be noticed that halves of all the components in vectors 1ˆ
uEv  and 1ˆ

Ev , in vectors 

ˆ J
uEv  and ˆ J

Ev , and in vectors ( 1)ˆ N
uE

v  and ( 1)ˆ N
E
v  are known, which are denoted by vectors 

1ˆ
Kv , ˆ J

Kv  and ( 1)ˆ N
K

v , respectively. Substituting the solutions to the state variables of layers as 

given in Eqs. (35) and (36) into those coupling equations containing 1ˆ
Kv , ˆ J

Kv  and ( 1)ˆ N
K

v , we 

can obtain respectively the local scattering relations of top surface 1 , interface J  and 

bottom surface 1N   as follows 

 1 1 1 1 1 1 1
0

ˆ
K K  A a D d T v s  (40) 

 0
ˆJ J J J J J J

K K  A a D d T v s  (41) 

 1 1 1 1 1 1 1
0

ˆN N N N N N N
K K

        A a D d T v s  (42) 

where 1 12a a  ( 1 12d d ), T T T[( ) ,( ) ]J JI JKa a a  ( T T T[( ) ,( ) ]J JI JKd d d ) and 1 ( 1)N N N a a   

( 1 ( 1)N N N d d ) are the arriving (departing) wave vectors of top surface 1 , interface J  and 

bottom surface 1N  , respectively, the corresponding coefficient matrices 1A  ( 1D ), JA   

( JD ) and 1NA  ( 1ND ) have components extracted, in accordance with 1ˆ
Kv , ˆ J

Kv  and ( 1)ˆ N
K

v , 

from respectively 12
Φ  ( 12

Φ ), [ , ]JI JK
v  T Φ Φ  ( [ , ]JI JK

v  T Φ Φ ) and ( 1)N N
v


T Φ  ( ( 1)N N

v


T Φ ), 1
0s , 

0
Js  and ( 1)

0
Ns  are the excitation source vectors of top surface 1 , interface J  and bottom 
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surface 1N  , respectively, the corresponding coefficient matrices 1
KT , J

KT  and 1N
K

T  

consist of the components from ,v u  T T T  in accordance with 1ˆ
Kv , ˆ J

Kv  and ( 1)ˆ N
K

v .  

The local scattering relations of top surface, interfaces and bottom surface are grouped 

together from up to down to give the global scattering relation 

 0 , Aa Dd s  (43) 

where the global arriving and departing wave vectors a  and d  are 

 

 

T
12 T 21 T 23 T T T ( 1) T ( 1) T

T
12 T 21 T 23 T T T ( 1) T ( 1) T
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JI JK N N N N

JI JK N N N N

 
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   

a a a a a a a a

d d d d d d d d

 

 
 (44) 

the corresponding coefficient matrices A  and D  are 

 
1 2 1 1 2 1, , , , , , , , , , ,J N J N    A A A A A D D D D D     (45) 

and 
T

1 T 2 T T ( 1) T
0 0 0 0 0( ) ,( ) , ,( ) , ,( )J N   s s s s s   is the global excitation source vector.  

It is noticed that the exponential functions in the solutions to the state variables of layers as 

shown in Eqs. (35) and (36) disappear in the scattering relations, since the thickness 

coordinates on the surfaces and at the interfaces are always zero in the corresponding local 

coordinates. This is the main advantage of introducing the local dual coordinates. 

3.4.4. Phase relations from compatibility conditions of layers 

Considering the compatibility between generalized displacements (generalized stresses) 

represented in local coordinates ( , , )JK JK JKx y z  and the corresponding ones represented in 

( , , )KJ KJ KJx y z of any layer j  (i.e. JK  or KJ), we have  

 ˆ ˆ ˆ ˆ( ) ( ), ( ) ( )JK JK KJ JK KJ JK JK KJ JK KJ
u u uz h z z h z      v T v v T v  (46) 

where JKh  ( KJh ) denotes the thickness of layer JK (KJ). Substitution of Eqs. (35) and (36) 

into Eq. (46), one obtains, by noticing JK KJ Λ Λ , JK KJ
vΦ T Φ , 1

v v
T T , JK KJ

a dn n  and 

JK KJ
d an n , the local phase relation of a typical layer j  (i.e. JK  or KJ) 
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where exp( )JK JK JKh P Λ  and exp( )KJ JK JKhP Λ  are respectively the JK JK
a an n  and 

JK JK
d dn n  diagonal local phase matrices, and JK

aI  and JK
dI  are identity matrices of order JK

an  

and JK
dn , respectively.  

Grouping together the local phase relations for all layers from up to down, one obtains the 

global phase relation 

 a PUd  (48) 

where P  and U are respectively the blocked diagonal global phase matrix and global 

permutation matrix composed of 
 

 
12 21 23 ( 1) ( 1), , , , , , , ,JI JK N N N N  P P P P P P P P   (49) 

 
12 23 ( 1), , , , , ,

v v

JK
JK N N JK a

n n JK
d




 
    

  

0 I
U U U U U U

I 0
   (50) 

3.4.5. System equation and dispersion equation 

The global scattering relation in Eq. (43) and the global phase relation in Eq. (48) both 

contain vn N  equations for the vn N  unknown arriving wave amplitudes (in a ) and 

vn N  unknown departing wave amplitudes (in d ). Thus the wave vectors a  and d can be 

determined accordingly. Substitution of Eq. (48) into Eq. (43) gives the system equation 

 0( )  APU D d Rd s  (51) 

where  R APU D  is the system matrix.  

If there is no excitation ( 0 s 0 ), i.e. the free wave propagation problem is considered, the 

vanishing of the system matrix determinant yields the following dispersion equation 

 
( , ; )x yk k  R 0

 (52) 

which may be solved numerically by a proper root searching technique (Guo, 2008). Thus, 

the complete propagation characteristics of various waves can be obtained. In particular, the 

resonant frequency of the multi-layered structures can be obtained as =0x yk k .  

It should be noted that the above proposed formulation of MRRM (Guo & Chen, 2008a, 

2008b; Guo, 2008; Guo et al., 2009) excludes any exponentially growing function and matrix 

inversion, therefore possesses unconditionally numerical stability and enables inclusion of 

surface and interface wave modes.  
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3.5. Numerical examples 

In this section, the above proposed formulation of MRRM for analyzing the propagation 

characteristics of various waves in the integrated acoustic wave devices are validated by a 

bulk acoustic resonator (BAR) consisting of 0.3μm  Al film as the top electrode, 3.0μm  AlN 

film as the propagation medium, 0.3μm  Al film as the bottom electrode, alternate 0.81μm  

SiO2 and 1.76μm  AlN layers as the Bragg Cell, 0.81μm  SiO2 layer as the support medium 

and 42.6μm  Si layer as the substrate. The material parameters of the exemplified BAR used 

in the calculation are given in Table 1.  

 

Type of 

material 
Material

Material parameters 

Elastic constants 

(GPa) 

Mass 

density 

(kg/m3) 

Dielectric constant

( 128.854 10  F/m)

Piezoelectric 

constants 

(C/m2) 

Isotropic 

elastic 

material 

Al 69E  , 26G   2700  1.6   — 

SiO2 70E  , 29.915G  2200  3.9   — 

Transversely 

isotropic 

elastic 

material 

Si 

11 22 33 164.8c c c  

12 13 23 63.5c c c   ,

44 55 79c c  , 

66 50.65c   

2330  11 22 33 11.8     — 

Transversely 

isotropic 

piezoelectric 

material 

AlN 

11 22 345c c  , 

33 395c  , 12 125c  ,

13 23 120c c  , 

44 55 118c c  , 

66 110c   

3512  11 22 9   , 

33 11   

15 24 0.48,e e  

31 32 0.58,e e  

33 1.55e   

Table 1. Material properties of the exemplified bulk acoustic resonator  

The resonant frequencies, represented by the engineering frequency / 2f    for the 

convenience of engineering application, of various waves in the multi-layered BAR are 

calculated by the formulation presented in Section 3.4 as the wavenumbers xk  and yk  are set 

to be zero. In order to show the influence of the number of unit cells in the Bragg Cell on the 

wave characteristics, Bragg Cells with 2 and 5 unit cells are respectively considered. 

Moreover, for sake of exploring the effects of electrodes, Bragg Cell and substrate on the 

wave characteristics in the propagation medium, the resonant frequencies of the 3.0μm  

AlN film, 3.0μm  AlN film with top and bottom electrodes, and the bulk acoustic resonator 

without substrate and with 5 unit cells in the Bragg Cell are also calculated. The obtained 

first fifteen resonant frequencies of these multi-layered structures are listed and compared in 

Table 2.  
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Order
3.0μm  

AlN film 

3.0μm  AlN 

film with 

electrodes 

The whole BAR 

with 2 unit cells in 

the Bragg Cell 

The whole BAR 

with 5 unit cells in 

the Bragg Cell 

The whole BAR without 

substrate and with 5 unit 

cells in the Bragg Cell 

1 0.9750 0.8380 0.0523 0.0441 0.1275 

2 1.8217 2.2329 0.1038 0.0655 0.2517 

3 1.9328 3.3316 0.1564 0.0885 0.3810 

4 2.9014 4.8778 0.2096 0.1332 0.5130 

5 3.6438 5.2997 0.2608 0.1755 0.6320 

6 3.8643 5.7110 0.3106 0.2031 0.8749 

7 4.8326 6.5112 0.3645 0.2206 1.0236 

8 5.4657 8.9604 0.4771 0.2652 1.2409 

9 5.7971 9.7544 0.5747 0.2668 1.3322 

10 6.7639 10.5897 0.6334 0.3066 1.4596 

11 7.2868 12.1454 0.6964 0.3350 1.7058 

12 7.7296 13.2501 0.7610 0.3542 1.7985 

13 8.6956 14.6379 0.8262 0.3984 1.9343 

14 9.1095 15.4651 0.8727 0.4394 2.1422 

15 9.6604 16.2959 0.8943 0.4679 2.2865 

Table 2. Effects of components on the first fifteen frequencies of the exemplified BAR (GHz) 

From Table 2, it is seen that all component layers in the multi-layered bulk acoustic wave 

device have obvious influence on the wave propagation characteristics, which validates the 

necessity to model the multi-layered acoustic wave devices by an integrated model with all 

components considered. The electrodes generally raise the resonant frequencies in the 

propagation medium except for the first mode. Adding unit cells of the Bragg Cell and the 

appending of substrate in the multilayered BAR will reduce the resonant frequencies and 

increase the number of wave modes in a given frequency range. These findings about the 

effects of electrodes, Bragg Cell and substrate on wave characteristics in the multilayered 

acoustic wave devices can be used in the design of these devices. 

4. Conclusion 

The accurate analysis and design of layered Bragg Cell and of multi-layered acoustic wave 

devices with Bragg Cell are studied by the method of reverberation-ray matrix in this 

chapter. We obtain the analysis formulation, the features and the formation of SH-wave 

band structures in layered Bragg Cell and the design rules of layered Bragg Cell according to 

SH-wave band requirements. A unified formulation of MRRM is attained for the analysis of 

multi-layered acoustic wave devices modeled by integrated multi-layers consisting of working 

media, electrodes, Bragg Cell, support layer and substrate. The effects of other components on 

the resonant characteristics in the working media are gained. All findings are validated by 

numerical examples. The study in this chapter leads to the following conclusions: 
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(1) In the SH-wave band structures of layered Bragg Cell, the phase constant spectra in pass-

bands and the attenuation constant spectra in stop-bands occur alternately. The phase 

constant spectra of characteristic SH waves are formed from the dispersion curves of 

equivalent SH waves due to the zone folding effect and wave interference phenomenon. All 

the attenuation constant loops as 0k   and the second and upper attenuation constant loops 

as 0k   of characteristic SH waves are formed due to the separation of the dispersion 

curves of equivalent SH waves with respect to frequency during the forming of the phase 

spectra. The first attenuation constant loop as 0k   of characteristic SH wave is formed due 

to the cutoff property of SH waves in constituent layers. The contrasts of SH-wave 

characteristic impedances of the constituent layers, the characteristic time of the unit cell and 

the characteristic times of the constituent layers are three kinds of essential parameters 

determining the formation of the band structures. The contrasts of SH-wave characteristic 

impedances decide whether the stop-bands due to periodicity of the periodic layered media 

exist or not. If yes, it further decides the widths of the frequency bands. The characteristic 

time of the unit cell decides how many pass-bands/stop-bands exist in a specified frequency 

range. The characteristic times of the constituent layers mainly decides the mid-frequencies 

of the frequency bands. These rules can be used for the design of the layered Bragg Cell 

according to SH-wave bands requirements.  

(2) The proposed MRRM for integrated multi-layered acoustic wave devices is analytical 

based on distributed-parameter model, yields unified formulation, includes all wave modes 

and possesses unconditionally numerical stability. It therefore leads to high accurate results 

at small computational cost and is applicable to complex multilayered acoustic wave devices 

while combined with a uniform computer program.  

(3) The integrated model considers nearly all the components in practical multi-layered 

acoustic wave devices, which definitely renders accurate wave propagation characteristics 

for guiding the proper design of and suppresses unfavorable spurious modes in the devices. 

Generally, the electrodes raise the resonant frequencies, while the Bragg Cell and the 

substrate reduce the resonant frequencies. 

In summary, the MRRM, the understanding of SH wave bands in the Bragg Cell and the 

integrated modeling of multi-layered acoustic wave devices with Bragg Cell in this chapter 

will push forward the design of high-performed acoustic wave devices. 
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