10 research outputs found

    Anti-septic effects of pelargonidin on HMGB1-induced responses in vitro and in vivo

    No full text
    A certain nucleosomal protein-high mobility group box-1 (HMGB1)-has recently been established as a late mediator of sepsis, with a relatively wide therapeutic window for pharmacological intervention. Pelargonidin (PEL) is a well-known red pigment found in plants; it has important biological activities that are potentially beneficial for human health. In the present study, we investigated whether PEL can modulate HMGB1-mediated inflammatory responses in human umbilical vein endothelial cells (HUVECs) and in mice. The anti-inflammatory activities of PEL were determined by measuring permeability, leukocyte adhesion and migration, and activation of pro-inflammatory proteins in HMGB1-activated HUVECs and mice, as well as the beneficial effects of PEL on survival rate in the mouse sepsis model. The data showed that PEL had effectively inhibited lipopolysaccharide (LPS)-induced release of HMGB1 and suppressed HMGB1-mediated septic responses, such as hyperpermeability, adhesion and migration of leukocytes, and expression of cell adhesion molecules. Furthermore, PEL inhibited the HMGB1-mediated production of tumor necrosis factor alpha (TNF-alpha) and interleukin 6 (IL-6), as well as the activation of nuclear factor-kappa B (NF-kappa B) and extracellular signal-regulated kinases 1 and 2 (ERK1/2). Collectively, these results indicate that PEL could be used to treat various severe vascular inflammatory diseases via the inhibition of the HMGB1 signaling pathway.close

    Response of Wheat Seedlings to Combined Effect of Drought and Salinity

    No full text

    Mechanical and aesthetics compatibility of Brazilian red propolis micellar nanocomposite as a cavity cleaning agent

    No full text

    Optimum Design of Composite Structures: A Literature Survey (1969–2009)

    No full text
    corecore