15 research outputs found

    Modeling HIV-1 Drug Resistance as Episodic Directional Selection

    Get PDF
    The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS) which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance

    Myocardial tagging by Cardiovascular Magnetic Resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications

    Get PDF
    Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging

    Visuomotor control in patients with Parkinson's disease

    No full text

    The familial risk and HLA susceptibility among narcolepsy patients in Hong Kong Chinese

    No full text
    Study Objectives: To explore the familial aggregation and HLA susceptibility of narcolepsy in Hong Kong Chinese by objective sleep measurements and HLA typing. Design: Case control design Participants: Twelve narcoleptic probands, 34 first-degree relatives, and 30 healthy controls. Interventions: N/A Measurements and Results: Each subject underwent a standardized nocturnal polysomnogram (PSG), followed by a daytime multiple sleep latency test (MSLT). HLA typing was performed for all subjects. One relative (2.9%) was diagnosed as suffering from narcolepsy with cataplexy. Nearly 30% of the relatives fulfilled the criteria of narcolepsy spectrum disorder (shortened mean sleep latency [MSL] and/or the presence of sleep onset REM periods [SOREMPs]). When using the population data for comparison, the relative risk of narcolepsy in first-degree relatives was 85.3. The odds ratio of narcolepsy spectrum disorder in first-degree relatives was 5.8 (95% CI: 1.2-29.3) when compared to healthy controls. There existed 6 multiplex families, in which all 10 relatives with narcolepsy spectrum disorders, including all 3 relatives with multiple SOREMPs, were positive for HLA DQB1*0602. Conclusions: Our study demonstrated a definitive familial aggregation of narcolepsy, narcolepsy spectrum disorders, and possibly cataplexy in Hong Kong Chinese. This familial aggregation supported an inherited basis for narcolepsy spectrum. The tight co-segregation of HLA DQB1*0602 and narcolepsy spectrum disorders might suggest that HLA typing, especially DQB1*0602, at least partly confer the familial risk of narcolepsy. In addition, our study suggested that the subjective questionnaire measurements including Ullanlinna Narcolepsy Scale and Epworth Sleepiness Scale were unable to detect the presence of narcolepsy spectrum disorders among the relatives. Astringent objective measurement-based design for family studies is suggested for future study. Further studies are indicated for the determination of the mode and molecular level of narcolepsy transmission.link_to_subscribed_fulltex

    Screen printed passive components for flexible power electronics

    Get PDF
    Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components—inductors, capacitors, and resistors—perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application
    corecore