18,337 research outputs found
Compact printed ultra-wideband antenna: corrugated monopole augmented with parasitic strips
© 2016 Informa UK Limited, trading as Taylor & Francis Group. A novel compact microstrip line-fed ultra-wideband (UWB) antenna is reported in this paper. The antenna consists of a corrugated half-ellipse monopole and three strips that act as near-field resonant parasitic (NFRP) elements. The entire UWB band (3.1–10.6 GHz) is covered from a very compact size: 19 mm × 10 mm. Two of the NFRP strips are utilized to cover more effectively the lower portion of the UWB frequency range; the third one improves the broadside gain values by 3.28 dB in the upper portion. As a consequence, this compact design maintains a stable radiation performance over the entire UWB band
Recommended from our members
Polaronic effect in the x-ray absorption spectra of La1-x Ca x MnO3 manganites.
X-ray absorption spectroscopy (XAS) is performed to study changes in the electronic structures of colossal magnetoresistance (CMR) and charged ordered (CO) La1-x Ca x MnO3 manganites with respect to temperature. The pre-edge features in O and Mn K-edge XAS spectra, which are highly sensitive to the local distortion of MnO6 octahedral, exhibit contrasting temperature dependence between CMR and CO samples. The seemingly counter-intuitive XAS temperature dependence can be reconciled in the context of polarons. These results help identify the most relevant orbital states associated with polarons and highlight the crucial role played by polarons in understanding the electronic structures of manganites
Recommended from our members
Latitudinal distribution of reactive nitrogen in the free troposphere over the Pacific Ocean in late winter/early spring
The late winter/early spring (February/March, 1994) measurements of Pacific Exploratory Mission-West (PEM-W) B have been analyzed to show latitudinal distributions (45°N to 10°S) of the mixing ratios of reactive nitrogen species (NO, peroxyacetylnitrate (PAN), HNO3, and NOy), ozone, and chemical tracers (CO, NMHCs, acetone, and C2Cl4) with a focus on the upper troposphere. Mixing ratios of all species are relatively low in the warm tropical and subtropical air south of the polar jetstream (≈28°N) but increase sharply with latitude in the cold polar air north of the jetstream. Noteworthy is the continuous increase in reservoir species (PAN and HNO3) and the simultaneous decrease in NOx toward the northern midlatitudes. The Harvard global three-dimensional model of tropospheric chemistry has been used to compare these observations with predictions. In the upper troposphere the magnitude and distribution of measured NOy and PAN as a function of latitude is well represented by this model, while NOx (measured NO + model calculated NO2) is underpredicted, especially in the tropics. Unlike several previous studies, where model-predicted HNO3 exceeded observations by as much as a factor of 10, the present data/model comparison is improved to within a factor of 2. The predicted upper tropospheric HNO3 is generally below or near measured values, and there is little need to invoke particle reactions as a means of removing or recycling HNO3. Comparison between measured NOy and the sum of its three main constituents (PAN + NOx + HNO3) on average show a small mean shortfall (<15%). This shortfall could be attributed to the presence of known but unmeasured species (e.g., peroxynitric acid and alkyl nitrates) as well as to instrument errors. Copyright 1998 by the American Geophysical Union
Bright betatron x-ray radiation from a laser-driven-clustering gas target
Hard X-ray sources from femtosecond (fs) laser-produced plasmas, including the betatron X-rays from laser wakefield-accelerated electrons, have compact sizes, fs pulse duration and fs pump-probe capability, making it promising for wide use in material and biological sciences. Currently the main problem with such betatron X-ray sources is the limited average flux even with ultra-intense laser pulses. Here, we report ultra-bright betatron X-rays can be generated using a clustering gas jet target irradiated with a small size laser, where a ten-fold enhancement of the X-ray yield is achieved compared to the results obtained using a gas target. We suggest the increased X-ray photon is due to the existence of clusters in the gas, which results in increased total electron charge trapped for acceleration and larger wiggling amplitudes during the acceleration. This observation opens a route to produce high betatron average flux using small but high repetition rate laser facilities for applications
Genetic analysis of self-associating immunoglobulin G rheumatoid factors from two rheumatoid synovia implicates an antigen-driven response.
Although much has been learned about the molecular basis of immunoglobulin M (IgM) rheumatoid factors (RFs) in healthy individuals and in patients with mixed cryoglobulinemia and rheumatoid arthritis, little is known about the genetic origins of the potentially pathogenic IgG RFs in the inflamed rheumatoid synovia of patients. Recently, we generated from unmanipulated synovium B cells several hybridomas that secreted self-associating IgG RFs. To delineate the genetic origins of such potentially pathogenic RFs, we adapted the anchored polymerase chain reaction to rapidly clone and characterize the expressed Ig V genes for the L1 and the D1 IgG RFs. Then, we identified the germline counterparts of the expressed L1 IgG RF V genes. The results showed that the L1 heavy chain was encoded by a Vh gene that is expressed preferentially during early ontogenic development, and that is probably located within 240 kb upstream of the Jh locus. The overlap between this RF Vh gene and the restricted fetal antibody repertoire is reminiscent of the natural antibody-associated Vh genes, and suggests that at least part of the "potential pathogenic" IgG RFs in rheumatoid synovium may derive from the "physiological" natural antibody repertoire in a normal immune system. Indeed, the corresponding germline Vh gene for L1 encodes the heavy chain of an IgM RF found in a 19-wk-old fetal spleen. Furthermore, the comparisons of the expressed RF V genes and their germline counterparts reveal that the L1 heavy and light chain variable regions had, respectively, 16 and 7 somatic mutations, which resulted in eight and four amino acid changes. Strikingly, all eight mutations in the complementarity determining regions of the V gene-encoded regions were replacement changes, while only 6 of 11 mutations in the framework regions caused amino acid changes. Combined with L1's high binding affinity toward the Fc fragment, these results suggest strongly that the L1 IgG RF must have been driven by the Fc antigen
SUMMERTIME TROPOSPHERIC OBSERVATIONS RELATED TO NXOY DISTRIBUTIONS AND PARTITIONING OVER ALASKA - ARCTIC BOUNDARY-LAYER EXPEDITION 3A
What is trained during food go/no-go training? A review focusing on mechanisms and a research agenda
This is the final version of the article. Available from the publisher via the DOI in this record.Purpose of Review:
During food go/no-go training, people consistently withhold responses toward no-go food items. We discuss how food go/no-go training may change people’s behavior toward no-go food items by comparing three accounts: (a) the training strengthens ‘top-down’ inhibitory control over food-related responses, (b) the training creates automatic ‘bottom-up’ associations between no-go food items and stopping responses, and (c) the training leads to devaluation of no-go food items.
Recent Findings:
Go/no-go training can reduce intake of food and choices for food and facilitate short-term weight loss. It appears unlikely that food go/no-go training strengthens top-down inhibitory control. There is some evidence suggesting the training could create automatic stop associations. There is strong evidence suggesting go/no-go training reduces evaluations of no-go food items.
Summary:
Food go/no-go training can change behavior toward food and evaluation of food items. To advance knowledge, more research is needed on the underlying mechanisms of the training, the role of attention during go/no-go training, and on when effects generalize to untrained food items.© The Author(s) 2017
Open Access
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this articl
Observation of ion gettering effect in high temperature superconducting oxide material
Ion gettering effect has been observed in high-temperature superconducting YBa2Cu3O7 material. Silicon ions were implanted into the material and subsequent high-temperature annealing produced ion movement from a low concentration region to a higher concentration region where the damage of the crystal structure is severe. This gettering effect could be used to make a superconductor-nonsuperconductor-superconductor trilayer structure within a single YBCO film.published_or_final_versio
The importance for immunoregulation for long-term cancer control.
Immune checkpoint blockades have recently emerged as a breakthrough treatment for solid tumors showing high response rates and long durability. In melanoma, the combination of ipilimumab with nivolumab showed high efficacy. However, still half the patients do not respond to this treatment. In order to increase the therapeutic ratio in melanoma and other cancers, different approaches are under evaluation. Three relevant questions are at the moment driving the research community: how to maximize benefit while minimizing toxicity; how to better identify patients who are more likely to benefit from immunotherapy; how to convert nonresponders into responders. In this review we summarize the most recent findings and we outline the most likely future challenges
Seasonal differences in the photochemistry of the South Pacific: A comparison of observations and model results from PEM-Tropics A and B
A time-dependent photochemical box model is used to examine the photochemistry of the equatorial and southern subtropical Pacific troposphere with aircraft data obtained during two distinct seasons: the Pacific Exploratory Mission-Tropics A (PEM-Tropics A) field campaign in September and October of 1996 and the Pacific Exploratory Mission-Tropics B (PEM-Tropics B) campaign in March and April of 1999. Model-predicted values were compared to observations for selected species (e.g., NO2, OH, HO2) with generally good agreement. Predicted values of HO2 were larger than those observed in the upper troposphere, in contrast to previous studies which show a general underprediction of HO2 at upper altitudes. Some characteristics of the budgets of HOx, NOx, and peroxides are discussed. The integrated net tendency for O3 is negative over the remote Pacific during both seasons, with gross formation equal to no more than half of the gross destruction. This suggests that a continual supply of O3 into the Pacific region throughout the year must exist in order to maintain O3 levels. Integrated net tendencies for equatorial O3 showed a seasonality, with a net loss of 1.06×1011 molecules cm-2 s-1 during PEM-Tropics B (March) increasing by 50% to 1.60×1011 molecules cm-2 s-1 during PEM-Tropics A (September). The seasonality over the southern subtropical Pacific was somewhat lower, with losses of 1.21×1011 molecules cm-2 s-1 during PEM-Tropics B (March) increasing by 25% to 1.51×1011 molecules cm-2 s-1 during PEM-Tropics A (September). While the larger net losses during PEM-Tropics A were primarily driven by higher concentrations of O3, the ability of the subtropical atmosphere to destroy O3 was ∼30% less effective during the PEM-Tropics A (September) campaign due to a drier atmosphere and higher overhead O3 column amounts. Copyright 2001 by the American Geophysical Union
- …
