94 research outputs found

    A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication

    Get PDF
    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs) involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi) screen with a druggable genome small interfering RNA (siRNA) library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ) at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b) promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome-scale approaches to identify HFs critical for disease progression and outcome

    The Role of Information and Financial Reporting in Corporate Governance and Debt Contracting

    Get PDF
    We review recent literature on the role of financial reporting transparency in reducing governance-related agency conflicts among managers, directors, and shareholders, as well as in reducing agency conflicts between shareholders and creditors, and offer researchers some suggested avenues for future research. Key themes include the endogenous nature of debt contracts and governance mechanisms with respect to information asymmetry between contracting parties, the heterogeneous nature of the informational demands of contracting parties, and the heterogeneous nature of the resulting governance and debt contracts. We also emphasize the role of a commitment to financial reporting transparency in facilitating informal multiperiod contracts among managers, directors, shareholders, and creditors

    Disordered Microbial Communities in the Upper Respiratory Tract of Cigarette Smokers

    Get PDF
    Cigarette smokers have an increased risk of infectious diseases involving the respiratory tract. Some effects of smoking on specific respiratory tract bacteria have been described, but the consequences for global airway microbial community composition have not been determined. Here, we used culture-independent high-density sequencing to analyze the microbiota from the right and left nasopharynx and oropharynx of 29 smoking and 33 nonsmoking healthy asymptomatic adults to assess microbial composition and effects of cigarette smoking. Bacterial communities were profiled using 454 pyrosequencing of 16S sequence tags (803,391 total reads), aligned to 16S rRNA databases, and communities compared using the UniFrac distance metric. A Random Forest machine-learning algorithm was used to predict smoking status and identify taxa that best distinguished between smokers and nonsmokers. Community composition was primarily determined by airway site, with individuals exhibiting minimal side-of-body or temporal variation. Within airway habitats, microbiota from smokers were significantly more diverse than nonsmokers and clustered separately. The distributions of several genera were systematically altered by smoking in both the oro- and nasopharynx, and there was an enrichment of anaerobic lineages associated with periodontal disease in the oropharynx. These results indicate that distinct regions of the human upper respiratory tract contain characteristic microbial communities that exhibit disordered patterns in cigarette smokers, both in individual components and global structure, which may contribute to the prevalence of respiratory tract complications in this population

    An integrative approach for a network based meta-analysis of viral RNAi screens.

    Get PDF
    BACKGROUND: Big data is becoming ubiquitous in biology, and poses significant challenges in data analysis and interpretation. RNAi screening has become a workhorse of functional genomics, and has been applied, for example, to identify host factors involved in infection for a panel of different viruses. However, the analysis of data resulting from such screens is difficult, with often low overlap between hit lists, even when comparing screens targeting the same virus. This makes it a major challenge to select interesting candidates for further detailed, mechanistic experimental characterization. RESULTS: To address this problem we propose an integrative bioinformatics pipeline that allows for a network based meta-analysis of viral high-throughput RNAi screens. Initially, we collate a human protein interaction network from various public repositories, which is then subjected to unsupervised clustering to determine functional modules. Modules that are significantly enriched with host dependency factors (HDFs) and/or host restriction factors (HRFs) are then filtered based on network topology and semantic similarity measures. Modules passing all these criteria are finally interpreted for their biological significance using enrichment analysis, and interesting candidate genes can be selected from the modules. CONCLUSIONS: We apply our approach to seven screens targeting three different viruses, and compare results with other published meta-analyses of viral RNAi screens. We recover key hit genes, and identify additional candidates from the screens. While we demonstrate the application of the approach using viral RNAi data, the method is generally applicable to identify underlying mechanisms from hit lists derived from high-throughput experimental data, and to select a small number of most promising genes for further mechanistic studies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13015-015-0035-7) contains supplementary material, which is available to authorized users
    corecore