227,584 research outputs found

    Spin Structure of the Nucleon - Status and Recent Results

    Full text link
    After the initial discovery of the so-called "spin crisis in the parton model" in the 1980's, a large set of polarization data in deep inelastic lepton-nucleon scattering was collected at labs like SLAC, DESY and CERN. More recently, new high precision data at large x and in the resonance region have come from experiments at Jefferson Lab. These data, in combination with the earlier ones, allow us to study in detail the polarized parton densities, the Q^2 dependence of various moments of spin structure functions, the duality between deep inelastic and resonance data, and the nucleon structure in the valence quark region. Together with complementary data from HERMES, RHIC and COMPASS, we can put new limits on the flavor decomposition and the gluon contribution to the nucleon spin. In this report, we provide an overview of our present knowledge of the nucleon spin structure and give an outlook on future experiments. We focus in particular on the spin structure functions g_1 and g_2 of the nucleon and their moments.Comment: 69 pages, 46 figures. Report to be published in "Progress in Particle and Nuclear Physics". v2 with added references and minor edit

    Off-axis impact of unidirectional composites with cracks: Dynamic stress intensification

    Get PDF
    The dynamic response of unidirectional composites under off axis (angle loading) impact is analyzed by assuming that the composite contains an initial flaw in the matrix material. The analytical method utilizes Fourier transform for the space variable and Laplace transform for the time variable. The off axis impact is separated into two parts, one being symmetric and the other skew-symmetric with reference to the crack plane. Transient boundary conditions of normal and shear tractions are applied to a crack embedded in the matrix of the unidirectional composite. The two boundary conditions are solved independently and the results superimposed. Mathematically, these conditions reduce the problem to a system of dual integral equations which are solved in the Laplace transform plane for the transformation of the dynamic stress intensity factor. The time inversion is carried out numerically for various combinations of the material properties of the composite and the results are displayed graphically

    Sudden bending of cracked laminates

    Get PDF
    A dynamic approximate laminated plate theory is developed with emphasis placed on obtaining effective solution for the crack configuration where the 1/square root of r stress singularity and the condition of plane strain are preserved. The radial distance r is measured from the crack edge. The results obtained show that the crack moment intensity tends to decrease as the crack length to laminate plate thickness is increased. Hence, a laminated plate has the desirable feature of stabilizing a through crack as it increases its length at constant load. Also, the level of the average load intensity transmitted to a through crack can be reduced by making the inner layers to be stiffer than the outer layers. The present theory, although approximate, is useful for analyzing laminate failure to crack propagation under dynamic load conditions

    Advanced electrochemical technology Semiannual report, 1 Jul. - 31 Dec. 1967

    Get PDF
    Gas diffusion advanced fuel cell and related electrochemical system

    Sudden stretching of a four layered composite plate

    Get PDF
    An approximate theory of laminated plates is developed by assuming that the extensioral and thickness mode of vibration are coupled. The mixed boundary value crack problem of a four layered composite plate is solved. Dynamic stress intensity factors for a crack subjected to suddenly applied stress are found to vary as a function of time and depend on the material properties of the laminate. Stress intensification in the region near the crack front can be reduced by having the shear modulus of the inner layers to be larger than that of the outer layers

    Electron and phonon correlations in systems of one-dimensional electrons coupled to phonons

    Full text link
    Electron and phonon correlations in systems of one-dimensional electrons coupled to phonons are studied at low temperatures by emphasizing on the effect of electron-phonon backward scattering. It is found that the 2kF2k_F-wave components of the electron density and phonon displacement field share the same correlations. Both correlations are quasi-long-ranged for a single conducting chain coupled to one-dimensional or three-dimensional phonons, and they are long-ranged for repulsive electron-electron interactions for a three-dimensional array of parallel one-dimensional conducting chains coupled to three-dimensional phonons

    Is there a universality of the helix-coil transition in protein models?

    Full text link
    The similarity in the thermodynamic properties of two completely different theoretical models for the helix-coil transition is examined critically. The first model is an all-atomic representation for a poly-alanine chain, while the second model is a minimal helix-forming model that contains no system specifics. Key characteristics of the helix-coil transition, in particular, the effective critical exponents of these two models agree with each other, within a finite-size scaling analysis.Comment: Latex, to appear in Eur. Phys. J.

    Effect of nonlinear filters on detrended fluctuation analysis

    Full text link
    We investigate how various linear and nonlinear transformations affect the scaling properties of a signal, using the detrended fluctuation analysis (DFA). Specifically, we study the effect of three types of transforms: linear, nonlinear polynomial and logarithmic filters. We compare the scaling properties of signals before and after the transform. We find that linear filters do not change the correlation properties, while the effect of nonlinear polynomial and logarithmic filters strongly depends on (a) the strength of correlations in the original signal, (b) the power of the polynomial filter and (c) the offset in the logarithmic filter. We further investigate the correlation properties of three analytic functions: exponential, logarithmic, and power-law. While these three functions have in general different correlation properties, we find that there is a broad range of variable values, common for all three functions, where they exhibit identical scaling behavior. We further note that the scaling behavior of a class of other functions can be reduced to these three typical cases. We systematically test the performance of the DFA method in accurately estimating long-range power-law correlations in the output signals for different parameter values in the three types of filters, and the three analytic functions we consider.Comment: 12 pages, 7 figure
    • …
    corecore