223,556 research outputs found

    Study of basic physical processes in liquid rocket engines

    Get PDF
    Inconsistencies between analytical results and measurements for liquid rocket thrust chamber performance, which escape suitable explanations, have motivated the examination of the basic phys ical modeling formulations as to their unlimited application. The publication of Prof. D. Straub's book, 'Thermofluid-dynamics of Optimized Rocket Propulsions,' further stimulated the interest of understanding the gas dynamic relationships in chemically reacting mixtures. A review of other concepts proposed by Falk-Ruppel (Gibbsian Thermodynamics), Straub (Alternative Theory, AT), Prigogine (Non-Equilibrium Thermodynamics), Boltzmann (Kinetic Theory), and Truesdell (Rational Mechanism) has been made to obtain a better understanding of the Navier-Stokes equation, which is now used extensively for chemically reacting flow treatment in combustion chambers. In addition to the study of the different concepts, two workshops were conducted to clarify some of the issues. The first workshop centered on Falk-Ruppel's new 'dynamics' concept, while the second one concentrated on Straub's AT. In this report brief summaries of the reviewed philosophies are presented and compared with the classical Navier-Stokes formulation in a tabular arrangement. Also the highlights of both workshops are addressed

    Transonic Shocks In Multidimensional Divergent Nozzles

    Full text link
    We establish existence, uniqueness and stability of transonic shocks for steady compressible non-isentropic potential flow system in a multidimensional divergent nozzle with an arbitrary smooth cross-section, for a prescribed exit pressure. The proof is based on solving a free boundary problem for a system of partial differential equations consisting of an elliptic equation and a transport equation. In the process, we obtain unique solvability for a class of transport equations with velocity fields of weak regularity(non-Lipschitz), an infinite dimensional weak implicit mapping theorem which does not require continuous Frechet differentiability, and regularity theory for a class of elliptic partial differential equations with discontinuous oblique boundary conditions.Comment: 54 page

    Global analysis of quadrupole shape invariants based on covariant energy density functionals

    Full text link
    Coexistence of different geometric shapes at low energies presents a universal structure phenomenon that occurs over the entire chart of nuclides. Studies of the shape coexistence are important for understanding the microscopic origin of collectivity and modifications of shell structure in exotic nuclei far from stability. The aim of this work is to provide a systematic analysis of characteristic signatures of coexisting nuclear shapes in different mass regions, using a global self-consistent theoretical method based on universal energy density functionals and the quadrupole collective model. The low-energy excitation spectrum and quadrupole shape invariants of the two lowest 0+0^{+} states of even-even nuclei are obtained as solutions of a five-dimensional collective Hamiltonian (5DCH) model, with parameters determined by constrained self-consistent mean-field calculations based on the relativistic energy density functional PC-PK1, and a finite-range pairing interaction. The theoretical excitation energies of the states: 21+2^+_1, 41+4^+_1, 02+0^+_2, 22+2^+_2, 23+2^+_3, as well as the B(E2;01+→21+)B(E2; 0^+_1\to 2^+_1) values, are in very good agreement with the corresponding experimental values for 621 even-even nuclei. Quadrupole shape invariants have been implemented to investigate shape coexistence, and the distribution of possible shape-coexisting nuclei is consistent with results obtained in recent theoretical studies and available data. The present analysis has shown that, when based on a universal and consistent microscopic framework of nuclear density functionals, shape invariants provide distinct indicators and reliable predictions for the occurrence of low-energy coexisting shapes. This method is particularly useful for studies of shape coexistence in regions far from stability where few data are available.Comment: 13 pages, 3 figures, accepted for publication in Phys. Rev.

    Consensus Formation in Multi-state Majority and Plurality Models

    Full text link
    We study consensus formation in interacting systems that evolve by multi-state majority rule and by plurality rule. In an update event, a group of G agents (with G odd), each endowed with an s-state spin variable, is specified. For majority rule, all group members adopt the local majority state; for plurality rule the group adopts the local plurality state. This update is repeated until a final consensus state is generally reached. In the mean field limit, the consensus time for an N-spin system increases as ln N for both majority and plurality rule, with an amplitude that depends on s and G. For finite spatial dimensions, domains undergo diffusive coarsening in majority rule when s or G is small. For larger s and G, opinions spread ballistically from the few groups with an initial local majority. For plurality rule, there is always diffusive domain coarsening toward consensus.Comment: 8 pages, 11 figures, 2-column revtex4 format. Updated version: small changes in response to referee comments. For publication in J Phys

    Stability Of contact discontinuity for steady Euler System in infinite duct

    Full text link
    In this paper, we prove structural stability of contact discontinuities for full Euler system

    Bending crystals: Emergence of fractal dislocation structures

    Full text link
    We provide a minimal continuum model for mesoscale plasticity, explaining the cellular dislocation structures observed in deformed crystals. Our dislocation density tensor evolves from random, smooth initial conditions to form self-similar structures strikingly similar to those seen experimentally - reproducing both the fractal morphologies and some features of the scaling of cell sizes and misorientations analyzed experimentally. Our model provides a framework for understanding emergent dislocation structures on the mesoscale, a bridge across a computationally demanding mesoscale gap in the multiscale modeling program, and a new example of self-similar structure formation in non-equilibrium systems.Comment: 4 pages, 4 figures, 5 movies (They can be found at http://www.lassp.cornell.edu/sethna/Plasticity/SelfSimilarity.html .) In press at Phys. Rev. Let

    Absolute continuity of symmetric Markov processes

    Full text link
    We study Girsanov's theorem in the context of symmetric Markov processes, extending earlier work of Fukushima-Takeda and Fitzsimmons on Girsanov transformations of ``gradient type.'' We investigate the most general Girsanov transformation leading to another symmetric Markov process. This investigation requires an extension of the forward-backward martingale method of Lyons-Zheng, to cover the case of processes with jumps.Comment: Published by the Institute of Mathematical Statistics (http://www.imstat.org) in the Annals of Probability (http://www.imstat.org/aop/) at http://dx.doi.org/10.1214/00911790400000043

    Living on the edge of chaos: minimally nonlinear models of genetic regulatory dynamics

    Full text link
    Linearized catalytic reaction equations modeling e.g. the dynamics of genetic regulatory networks under the constraint that expression levels, i.e. molecular concentrations of nucleic material are positive, exhibit nontrivial dynamical properties, which depend on the average connectivity of the reaction network. In these systems the inflation of the edge of chaos and multi-stability have been demonstrated to exist. The positivity constraint introduces a nonlinearity which makes chaotic dynamics possible. Despite the simplicity of such minimally nonlinear systems, their basic properties allow to understand fundamental dynamical properties of complex biological reaction networks. We analyze the Lyapunov spectrum, determine the probability to find stationary oscillating solutions, demonstrate the effect of the nonlinearity on the effective in- and out-degree of the active interaction network and study how the frequency distributions of oscillatory modes of such system depend on the average connectivity.Comment: 11 pages, 5 figure
    • 

    corecore