3,271 research outputs found

    The contributions of qqqqqˉqqqq\bar{q} components to the axial charges of proton and its resonances

    Full text link
    We calculate the axial charges of the proton and its resonances in the framework of the constituent quark model, which is extended to include the qqqqqˉqqqq\bar{q} components. If 20% admixtures of the qqqqqˉqqqq\bar{q} components in the proton are assumed, the theoretical value for the axial charge in our model is in good agreement with the empirical value, which can not be well reproduced in the traditional constituent quark model even though the SU(6)O(3)SU(6) \bigotimes O(3) symmetry breaking or relativistic effect is taken into account. We also predict an unity axial charge for N(1440)N^{*}(1440) with 30% qqqqqˉqqqq\bar{q} components constrained by the strong and electromagnetic decays.Comment: 4 pages, 4 table

    Modulation of Mitochondrial Bioenergetics in the Isolated Guinea Pig Beating Heart by Potassium and Lidocaine Cardioplegia: Implications for Cardioprotection

    Get PDF
    Mitochondria are damaged by cardiac ischemia/reperfusion (I/R) injury but can contribute to cardioprotection. We tested if hyperkalemic cardioplegia (CP) and lidocaine (LID) differently modulate mitochondrial (m) bioenergetics and protect hearts against I/R injury. Guinea pig hearts (n = 71) were perfused with Krebs Ringer\u27s solution before perfusion for 1 minute just before ischemia with either CP (16 mM K+) or LID (1 mM) or Krebs Ringer\u27s (control, 4 mM K+). The 1-minute perfusion period assured treatment during ischemia but not on reperfusion. Cardiac function, NADH, FAD, m[Ca2+], and superoxide (reactive oxygen species) were assessed at baseline, during the 1-minute perfusion, and continuously during I/R. During the brief perfusion before ischemia, CP and LID decreased reactive oxygen species and increased NADH without changing m[Ca2+]. Additionally, CP decreased FAD. During ischemia, NADH was higher and reactive oxygen species was lower after CP and LID, whereas m[Ca2+] was lower only after LID. On reperfusion, NADH and FAD were more normalized, and m[Ca2+] and reactive oxygen species remained lower after CP and LID. Better functional recovery and smaller infarct size after CP and LID were accompanied by better mitochondrial function. These results suggest that mitochondria may be implicated, directly or indirectly, in protection by CP and LID against I/R injury

    Role of graphene on hierarchical flower-like NiAl layered double hydroxide-nickel foam-graphene as binder-free electrode for high-rate hybrid supercapacitor

    Get PDF
    In this work, a facile two-step hydrothermal method was reported to grow hierarchical flower-like NiAl layered double hydroxide (LDH) directly on 3D nickel foam (NF) which was further coated with 2D graphene nanosheets (GNS) layers as binder-free supercapacitor electrode. The positive and negative effects of GNS on the electrochemical performance of LDH-NF electrode were investigated in detail. The prepared LDH-NF/GNS electrode maintained an enhanced specific capacity of 165.6 C g-1 after 4000 cycles at a high current density of 40 A g-1. Furthermore, a hybrid supercapacitor, with LDH-NF/GNS and GNS-NF as the positive and negative electrodes, achieved an energy density (31.5 Wh kg-1 at a power density of 400 W kg-1) and super long-term cycle stability (a specific capacity of 67.2 C g-1 at 5 A g-1 after 5000 cycles with 80% retention). This study not only opens up the possibility of engineering LDH-NF/GNS into a promising electrode, but also highlights the positive and negative roles of GNS on LDH-NF as binder-free electrodes for further development of high-performance supercapacitors

    Sequence of the Genome of Lactate Dehydrogenase-Elevating Virus: Heterogenicity between Strains P and C

    Get PDF
    AbstractThe complete nucleotide sequence of genomic RNA (14104 nt) of one strain of lactate dehydrogenase-elevating virus (LDV), LDV-P, is reported. It exhibits only about 80% nucleotide identity with the sequence reported for another LDV strain, LDV-C (Godeny et al., Virology 194, 585-596 (1993), and is 68 nucleotides shorter than the reported LDV-C sequence. The difference in length is largely due to the lack of a 59-nucleotide-long direct repeat in ORF 1a of the reported LDV-C sequence. Sequence analysis of a total of 1.4 kb of ORF 1a of LDV-C via reverse transcription/polymerase chain reaction (RT/PCR) technology failed to confirm the presence of this repeat in the LDV-C genome as well as of 24 deletions/insertions of single nucleotides that give rise to apparent transient reading frame differences between the LDV-P and LDV-C genomes and might have represented frameshift mutations. An additional 35 nucleotides in ORF 1a of the RT/PCR LDV-C products were the same as in the LDV-P rather than the reported LDV-C genome. The nucleotide sequences of the 5′ leader and the 3′ noncoding ends of the two genomes and the heptanucleotides involved in joining the 5′ leader to the bodies of the subgenomic mRNAs were highly conserved or identical. The predicted LDV-P proteins, however, differed from those predicted for the LDV-C proteins between 25% for the ORF 2 protein and 1% for the ORF 7 nuoleocapsid protein. All functional motifs of the ORF 1a and ORF 1b proteins were conserved. The ORF 1a protein possesses 11 potential transmembrane segments that flank the serine protease domain

    Goos-H\"{a}nchen-like shifts for Dirac fermions in monolayer graphene barrier

    Full text link
    We investigate the Goos-H\"{a}nchen-like shifts for Dirac fermions in transmission through a monolayer graphene barrier. The lateral shifts, as the functions of the barrier's width and the incidence angle, can be negative and positive in Klein tunneling and classical motion, respectively. Due to their relations to the transmission gap, the lateral shifts can be enhanced by the transmission resonances when the incidence angle is less than the critical angle for total reflection, while their magnitudes become only the order of Fermi wavelength when the incidence angle is larger than the critical angle. These tunable beam shifts can also be modulated by the height of potential barrier and the induced gap, which gives rise to the applications in graphene-based devices.Comment: 5 pages, 5 figure

    High speed synchrotron X-ray imaging studies of the ultrasound shockwave and enhanced flow during metal solidification processes

    Get PDF
    The highly dynamic behaviour of ultrasonic bubble implosion in liquid metal, the multiphase liquid metal flow containing bubbles and particles, and the interaction between ultrasonic waves and semisolid phases during solidification of metal were studied in situ using the complementary ultrafast and high speed synchrotron X-ray imaging facilities housed respectively at the Advanced Photon Source, Argonne National Laboratory, US, and Diamond Light Source, UK. Real-time ultrafast X-ray imaging of 135,780 frames per second (fps) revealed that ultrasonic bubble implosion in a liquid Bi-8 wt. %Zn alloy can occur in a single wave period (30 kHz), and the effective region affected by the shockwave at implosion was 3.5 times the original bubble diameter. Furthermore, ultrasound bubbles in liquid metal move faster than the primary particles, and the velocity of bubbles is 70 ~ 100% higher than that of the primary particles present in the same locations close to the sonotrode. Ultrasound waves can very effectively create a strong swirling flow in a semisolid melt in less than one second. The energetic flow can detach solid particles from the liquid-solid interface and redistribute them back into the bulk liquid very effectively

    Gauge coupling flux thresholds, exotic matter and the unification scale in F-SU(5) GUT

    Full text link
    We explore the gauge coupling relations and the unification scale in F-theory SU(5) GUT broken down to the Standard Model by an internal U(1)Y gauge flux. We consider variants with exotic matter representations which may appear in these constructions and investigate their role in the effective field theory model. We make a detailed investigation on the conditions imposed on the extraneous matter to raise the unification scale and make the color triplets heavy in order to avoid fast proton decay. We also discuss in brief the implications on the gaugino masses.Comment: 20 pages, 3 figures, references and extended comments on KK thresholds effects adde

    Boronic Acid Derivatives Targeting HIV-1

    Get PDF
    A series of novel boronic acid derivatives containing either a pyrimidine or purine base was synthesized. The preparation involved the condensation of 4-bromobutyl boronic acid with the appropriate base. These acyclic nucleosides were designed as potential antiviral agents especially targeting the human immunodeficiency virus. Two analogues, 6-chloro-9-(4-dihydroxyborylbutyl)purine and 2,6-dichloro-9-(4-dihydroxyborylbutyl)purine, exhibited EC50 values of 7.7 µM and 0.99 µM, respectively, in an HIV-1 syncytial plaque reduction assay
    corecore