9,275 research outputs found

    A new quasi-exactly solvable problem and its connection with an anharmonic oscillator

    Full text link
    The two-dimensional hydrogen with a linear potential in a magnetic field is solved by two different methods. Furthermore the connection between the model and an anharmonic oscillator had been investigated by methods of KS transformation

    Selectron Studies at e-e- and e+e- Colliders

    Get PDF
    Selectrons may be studied in both e-e- and e+e- collisions at future linear colliders. Relative to e+e-, the e-e- mode benefits from negligible backgrounds and \beta threshold behavior for identical selectron pair production, but suffers from luminosity degradation and increased initial state radiation and beamstrahlung. We include all of these effects and compare the potential for selectron mass measurements in the two modes. The virtues of the e-e- collider far outweigh its disadvantages. In particular, the selectron mass may be measured to 100 MeV with a total integrated luminosity of 1 fb^-1, while more than 100 fb^-1 is required in e+e- collisions for similar precision.Comment: 16 pages, 11 figure

    Results of the MRI substudy of the intravenous magnesium efficacy in stroke trial

    Get PDF
    <p><b>Background and Purpose:</b>Although magnesium is neuroprotective in animal stroke models, no clinical benefit was confirmed in the Intravenous Magnesium Efficacy in Stroke (IMAGES) trial of acute stroke patients. The Magnetic Resonance in IMAGES (MR IMAGES) substudy investigated the effects of magnesium on the imaging surrogate outcome of infarct growth.</p> <p><b>Methods:</b> IMAGES trial patients in participating centers were randomized to receive either intravenous magnesium or placebo within 12 hours of stroke onset. Infarct growth was defined as volume difference between baseline diffusion-weighted imaging and day 90 fluid-attenuated inversion recovery image lesions. Patients who died were imputed the largest infarct growth observed.</p> <p><b>Results:</b> Among the 90 patients included in the primary analysis, there was no difference in infarct growth (median absolute growth, P=0.639; median percentage growth, P=0.616; proportion with any growth, P=0.212) between the 46 treated with magnesium and 44 with placebo. Infarct growth correlated with NIHSS score change from baseline to day 90. There was a trend showing baseline serum glucose correlated with infarct growth with magnesium treatment, but not in the placebo group. The mismatch frequency was reduced from 73% to 47% by increasing the mismatch threshold from >20% to >100% of core volume.</p> <p><b>Conclusions:</b> Infarct growth, confirmed here as a surrogate for clinical progression, was similar between magnesium and placebo treatment, paralleling the main IMAGES trial clinical outcomes. Glucose was a covariate for infarct growth with magnesium treatment. A more stringent mismatch threshold to define penumbra more appropriately would have excluded half of the patients in this 12-hour time window stroke study.</p&gt

    Modern nuclear force predictions for the neutron-deuteron scattering lengths

    Get PDF
    The nd doublet and quartet scattering lengths have been calculated based on the modern NN and 3N interactions. We also studied the effect of the electromagnetic interactions in the form introduced in AV18. Switching them off for the various nuclear force models leads to shifts of up to +0.04 fm for doublet scattering length, which is significant for present day standards. The electromagnetic effects have also a noticeable effect on quartet scattering length, which otherwise is extremely stable under the exchange of the nuclear forces. For the current nuclear force models there is a strong scatter of the 3H binding energy and the doublet scattering length values around an averaged straight line (Phillips line). This allows to use doublet scattering length and the 3H binding energy as independent low energy observables.Comment: 16 pages, 1 table, 4 ps figure

    Nonuniversal finite-size scaling in anisotropic systems

    Full text link
    We study the bulk and finite-size critical behavior of the O(n)(n) symmetric ϕ4\phi^4 theory with spatially anisotropic interactions of non-cubic symmetry in d<4d<4 dimensions. In such systems of a given (d,n)(d,n) universality class, two-scale factor universality is absent in bulk correlation functions, and finite-size scaling functions including the Privman-Fisher scaling form of the free energy, the Binder cumulant ratio and the Casimir amplitude are shown to be nonuniversal. In particular it is shown that, for anisotropic confined systems, isotropy cannot be restored by an anisotropic scale transformation.Comment: 8 pages, 1 figure, accepted for publication in Phys. Rev. E and modifications of tex

    Higgs algebraic symmetry of screened system in a spherical geometry

    Full text link
    The orbits and the dynamical symmetries for the screened Coulomb potentials and isotropic harmonic oscillators have been studied by Wu and Zeng [Z. B. Wu and J. Y. Zeng, Phys. Rev. A 62,032509 (2000)]. We find the similar properties in the responding systems in a spherical space, whose dynamical symmetries are described by Higgs Algebra. There exists a conserved aphelion and perihelion vector, which, together with angular momentum, constitute the generators of the geometrical symmetry group at the aphelia and perihelia points (r˙=0)(\dot{r}=0).Comment: 8 pages, 1 fi

    Properties and Performance of Two Wide Field of View Cherenkov/Fluorescence Telescope Array Prototypes

    Full text link
    A wide field of view Cherenkov/fluorescence telescope array is one of the main components of the Large High Altitude Air Shower Observatory project. To serve as Cherenkov and fluorescence detectors, a flexible and mobile design is adopted for easy reconfiguring of the telescope array. Two prototype telescopes have been constructed and successfully run at the site of the ARGO-YBJ experiment in Tibet. The features and performance of the telescopes are presented

    Heat Conduction and Magnetic Phase Behavior in Electron-Doped Ca_{1-x} La_x MnO_3(0 <= x <= 0.2)

    Full text link
    Measurements of thermal conductivity (kappa) vs temperature are reported for a series of Ca_{1-x} La_x MnO_3(0 <= x <= 0.2) specimens. For the undoped (x=0), G-type antiferromagnetic compound a large enhancement of kappa below the Neel temperature (T_N ~ 125 K) indicates a strong coupling of heat-carrying phonons to the spin system. This enhancement exhibits a nonmonotonic behavior with increasing x and correlates remarkably well with the small ferromagnetic component of the magnetization reported previously [Neumeier and Cohn, Phys. Rev. B 61 14319 (2000).] Magnetoelastic polaron formation appears to underly the behavior of kappa and the magnetization at x <= 0.02.Comment: submitted to PRB; 4 pp., 4 Fig.'s, RevTex

    Constraints on charged Higgs bosons from D(s)+- -> mu+- nu and D(s)+- -> tau+- nu

    Full text link
    The decays D(s)+- -> mu+- nu and D(s)+- -> tau+- nu have traditionally been used to measure the D(s)+- meson decay constant f_D(s). Recent measurements at CLEO-c and the B factories suggest a branching ratio for both decays somewhat higher than the Standard Model prediction using f_D(s) from unquenched lattice calculations. The charged Higgs boson (H+-) in the Two Higgs Doublet Model (Type II) would also mediate these decays, but any sizeable contribution from H+- can only suppress the branching ratios and consequently is now slightly disfavoured. It is shown that constraints on the parameters tan(beta) and m_H+- from such decays can be competitive with and complementary to analogous constraints derived from the leptonic meson decays B+- -> tau+- nu_tau and K+- -> mu+- nu_mu, especially if lattice calculations eventually prefer f_D(s) < 250 MeV.Comment: 18 pages, 4 figure
    corecore