9,275 research outputs found
A new quasi-exactly solvable problem and its connection with an anharmonic oscillator
The two-dimensional hydrogen with a linear potential in a magnetic field is
solved by two different methods. Furthermore the connection between the model
and an anharmonic oscillator had been investigated by methods of KS
transformation
Selectron Studies at e-e- and e+e- Colliders
Selectrons may be studied in both e-e- and e+e- collisions at future linear
colliders. Relative to e+e-, the e-e- mode benefits from negligible backgrounds
and \beta threshold behavior for identical selectron pair production, but
suffers from luminosity degradation and increased initial state radiation and
beamstrahlung. We include all of these effects and compare the potential for
selectron mass measurements in the two modes. The virtues of the e-e- collider
far outweigh its disadvantages. In particular, the selectron mass may be
measured to 100 MeV with a total integrated luminosity of 1 fb^-1, while more
than 100 fb^-1 is required in e+e- collisions for similar precision.Comment: 16 pages, 11 figure
Results of the MRI substudy of the intravenous magnesium efficacy in stroke trial
<p><b>Background and Purpose:</b>Although magnesium is neuroprotective in animal stroke models, no clinical benefit was confirmed in the Intravenous Magnesium Efficacy in Stroke (IMAGES) trial of acute stroke patients. The Magnetic
Resonance in IMAGES (MR IMAGES) substudy investigated the effects of magnesium on the imaging surrogate
outcome of infarct growth.</p>
<p><b>Methods:</b> IMAGES trial patients in participating centers were randomized to receive either intravenous magnesium or placebo within 12 hours of stroke onset. Infarct growth was defined as volume difference between baseline diffusion-weighted imaging and day 90 fluid-attenuated inversion recovery image lesions. Patients who died were imputed the largest infarct growth observed.</p>
<p><b>Results:</b> Among the 90 patients included in the primary analysis, there was no difference in infarct growth (median absolute growth, P=0.639; median percentage growth, P=0.616; proportion with any growth, P=0.212) between the
46 treated with magnesium and 44 with placebo. Infarct growth correlated with NIHSS score change from baseline to
day 90. There was a trend showing baseline serum glucose correlated with infarct growth with magnesium treatment,
but not in the placebo group. The mismatch frequency was reduced from 73% to 47% by increasing the mismatch
threshold from >20% to >100% of core volume.</p>
<p><b>Conclusions:</b> Infarct growth, confirmed here as a surrogate for clinical progression, was similar between magnesium and placebo treatment, paralleling the main IMAGES trial clinical outcomes. Glucose was a covariate for infarct growth with magnesium treatment. A more stringent mismatch threshold to define penumbra more appropriately would have
excluded half of the patients in this 12-hour time window stroke study.</p>
Modern nuclear force predictions for the neutron-deuteron scattering lengths
The nd doublet and quartet scattering lengths have been calculated based on
the modern NN and 3N interactions. We also studied the effect of the
electromagnetic interactions in the form introduced in AV18. Switching them off
for the various nuclear force models leads to shifts of up to +0.04 fm for
doublet scattering length, which is significant for present day standards. The
electromagnetic effects have also a noticeable effect on quartet scattering
length, which otherwise is extremely stable under the exchange of the nuclear
forces. For the current nuclear force models there is a strong scatter of the
3H binding energy and the doublet scattering length values around an averaged
straight line (Phillips line). This allows to use doublet scattering length and
the 3H binding energy as independent low energy observables.Comment: 16 pages, 1 table, 4 ps figure
Nonuniversal finite-size scaling in anisotropic systems
We study the bulk and finite-size critical behavior of the O symmetric
theory with spatially anisotropic interactions of non-cubic symmetry
in dimensions. In such systems of a given universality class,
two-scale factor universality is absent in bulk correlation functions, and
finite-size scaling functions including the Privman-Fisher scaling form of the
free energy, the Binder cumulant ratio and the Casimir amplitude are shown to
be nonuniversal. In particular it is shown that, for anisotropic confined
systems, isotropy cannot be restored by an anisotropic scale transformation.Comment: 8 pages, 1 figure, accepted for publication in Phys. Rev. E and
modifications of tex
Higgs algebraic symmetry of screened system in a spherical geometry
The orbits and the dynamical symmetries for the screened Coulomb potentials
and isotropic harmonic oscillators have been studied by Wu and Zeng [Z. B. Wu
and J. Y. Zeng, Phys. Rev. A 62,032509 (2000)]. We find the similar properties
in the responding systems in a spherical space, whose dynamical symmetries are
described by Higgs Algebra. There exists a conserved aphelion and perihelion
vector, which, together with angular momentum, constitute the generators of the
geometrical symmetry group at the aphelia and perihelia points .Comment: 8 pages, 1 fi
Properties and Performance of Two Wide Field of View Cherenkov/Fluorescence Telescope Array Prototypes
A wide field of view Cherenkov/fluorescence telescope array is one of the
main components of the Large High Altitude Air Shower Observatory project. To
serve as Cherenkov and fluorescence detectors, a flexible and mobile design is
adopted for easy reconfiguring of the telescope array. Two prototype telescopes
have been constructed and successfully run at the site of the ARGO-YBJ
experiment in Tibet. The features and performance of the telescopes are
presented
Heat Conduction and Magnetic Phase Behavior in Electron-Doped Ca_{1-x} La_x MnO_3(0 <= x <= 0.2)
Measurements of thermal conductivity (kappa) vs temperature are reported for
a series of Ca_{1-x} La_x MnO_3(0 <= x <= 0.2) specimens. For the undoped
(x=0), G-type antiferromagnetic compound a large enhancement of kappa below the
Neel temperature (T_N ~ 125 K) indicates a strong coupling of heat-carrying
phonons to the spin system. This enhancement exhibits a nonmonotonic behavior
with increasing x and correlates remarkably well with the small ferromagnetic
component of the magnetization reported previously [Neumeier and Cohn, Phys.
Rev. B 61 14319 (2000).] Magnetoelastic polaron formation appears to underly
the behavior of kappa and the magnetization at x <= 0.02.Comment: submitted to PRB; 4 pp., 4 Fig.'s, RevTex
Constraints on charged Higgs bosons from D(s)+- -> mu+- nu and D(s)+- -> tau+- nu
The decays D(s)+- -> mu+- nu and D(s)+- -> tau+- nu have traditionally been
used to measure the D(s)+- meson decay constant f_D(s). Recent measurements at
CLEO-c and the B factories suggest a branching ratio for both decays somewhat
higher than the Standard Model prediction using f_D(s) from unquenched lattice
calculations. The charged Higgs boson (H+-) in the Two Higgs Doublet Model
(Type II) would also mediate these decays, but any sizeable contribution from
H+- can only suppress the branching ratios and consequently is now slightly
disfavoured. It is shown that constraints on the parameters tan(beta) and m_H+-
from such decays can be competitive with and complementary to analogous
constraints derived from the leptonic meson decays B+- -> tau+- nu_tau and K+-
-> mu+- nu_mu, especially if lattice calculations eventually prefer f_D(s) <
250 MeV.Comment: 18 pages, 4 figure
- …
