85,449 research outputs found
Systematic study of the symmetry energy coefficient in finite nuclei
The symmetry energy coefficients in finite nuclei have been studied
systematically with a covariant density functional theory (DFT) and compared
with the values calculated using several available mass tables. Due to the
contamination of shell effect, the nuclear symmetry energy coefficients
extracted from the binding energies have large fluctuations around the nuclei
with double magic numbers. The size of this contamination is shown to be
smaller for the nuclei with larger isospin value. After subtracting the shell
effect with the Strutinsky method, the obtained nuclear symmetry energy
coefficients with different isospin values are shown to decrease smoothly with
the mass number and are subsequently fitted to the relation . The resultant volume and
surface coefficients from axially deformed covariant DFT calculations are
and MeV respectively. The ratio is in good
agreement with the value derived from the previous calculations with the
non-relativistic Skyrme energy functionals. The coefficients and
corresponding to several available mass tables are also extracted. It is shown
that there is a strong linear correlation between the volume and surface
coefficients and the ratios are in between for all
the cases.Comment: 16 pages, 6 figure
Recommended from our members
A Palette of Deepened Emotions: Exploring Emotional Challenge in Virtual Reality Games
Recent work introduced the notion of ‘emotional challenge’promising for understanding more unique and diverse player experiences (PX). Although emotional challenge has immediately attracted HCI researchers’ attention, the concept has not been experimentally explored, especially in virtual reality (VR), one of the latest gaming environments. We conducted two experiments to investigate how emotional challenge affects PX when separately from or jointly with conventional challenge in VR and PC conditions. We found that relatively exclusive emotional challenge induced a wider range of different emotions in both conditions, while the adding of emotional challenge broadened emotional responses only in VR. In both experiments, VR significantly enhanced the measured PX of emotional responses, appreciation, immersion and presence. Our findings indicate that VR may be an ideal medium to present emotional challenge and also extend the understanding of emotional (and conventional) challenge in video games
Multivariate adaptive regression splines for estimating riverine constituent concentrations
Regression-based methods are commonly used for riverine constituent concentration/flux estimation, which is essential for guiding water quality protection practices and environmental decision making. This paper developed a multivariate adaptive regression splines model for estimating riverine constituent concentrations (MARS-EC). The process, interpretability and flexibility of the MARS-EC modelling approach, was demonstrated for total nitrogen in the Patuxent River, a major river input to Chesapeake Bay. Model accuracy and uncertainty of the MARS-EC approach was further analysed using nitrate plus nitrite datasets from eight tributary rivers to Chesapeake Bay. Results showed that the MARS-EC approach integrated the advantages of both parametric and nonparametric regression methods, and model accuracy was demonstrated to be superior to the traditionally used ESTIMATOR model. MARS-EC is flexible and allows consideration of auxiliary variables; the variables and interactions can be selected automatically. MARS-EC does not constrain concentration-predictor curves to be constant but rather is able to identify shifts in these curves from mathematical expressions and visual graphics. The MARS-EC approach provides an effective and complementary tool along with existing approaches for estimating riverine constituent concentrations
Studying RFID adoption by SMES in the Taiwanese IT industry
With the advent of Radio Frequency Identification (RFID), organisations have the opportunity to rethink how their organisation will operate and integrate in the supply chain. Especially for Small to Medium Sized Enterprises (SMEs), that they have limited resources adopting such an innovative technology (i.e. RFID) can be daunting. Literature indicates that SMEs that deal with implementation have so far only a few guidelines regarding specific opportunities and risks. This research is therefore trying to fill the gap by employing Exploratory Factor Analysis (EFA) techniques and utilising a questionnaire survey with the aim of exploring the factors that affect SMEs’ RFID adoption in the Taiwan Information Technology (IT) manufacturing industry. In doing so, the adoption factors which are classified into 3 different adopters categories named ready adopter (cost and management), initiator adopter (competitiveness and process efficiency) and unprepared adopter (IT management difficulties, IT implementation difficulties and cost of implementation) using EFA technique. A SMEs RFID adoption model is then proposed. It is anticipated that the findings of this research will not only enhance the research in RFID adoption in SMEs, but can also act as a reference for practitioners in the industry and researchers in the academic field
Communication Theoretic Data Analytics
Widespread use of the Internet and social networks invokes the generation of
big data, which is proving to be useful in a number of applications. To deal
with explosively growing amounts of data, data analytics has emerged as a
critical technology related to computing, signal processing, and information
networking. In this paper, a formalism is considered in which data is modeled
as a generalized social network and communication theory and information theory
are thereby extended to data analytics. First, the creation of an equalizer to
optimize information transfer between two data variables is considered, and
financial data is used to demonstrate the advantages. Then, an information
coupling approach based on information geometry is applied for dimensionality
reduction, with a pattern recognition example to illustrate the effectiveness.
These initial trials suggest the potential of communication theoretic data
analytics for a wide range of applications.Comment: Published in IEEE Journal on Selected Areas in Communications, Jan.
201
Atomic electron energies including relativistic effects and quantum electrodynamic corrections
Atomic electron energies have been calculated relativistically. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all orbitals in all atoms with 2 less than or equal to Z less than or equal to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. These results will serve for detailed comparison of calculations based on other approaches. The magnitude of quantum electrodynamic corrections is exhibited quantitatively for each state
Theoretical L-shell Coster-Kronig energies 11 or equal to z or equal to 103
Relativistic relaxed-orbital calculations of L-shell Coster-Kronig transition energies have been performed for all possible transitions in atoms with atomic numbers. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first-order approximation to the local approximation was thus included. Quantum-electrodynamic corrections were made. Each transition energy was computed as the difference between results of separate self-consistent-field calculations for the initial, singly ionized state and the final two-hole state. The following quantities are listed: total transition energy, 'electric' (Dirac-Hartree-Fock-Slater) contribution, magnetic and retardation contributions, and contributions due to vacuum polarization and self energy
- …