3,965 research outputs found
Smallest eigenvalues of Hankel matrices for exponential weights
AbstractWe obtain the rate of decay of the smallest eigenvalue of the Hankel matrices ∫Itj+kW2(t)dtj,k=0n for a general class of even exponential weights W2=exp(−2Q) on an interval I. More precise asymptotics for more special weights have been obtained by many authors
Walking and climbing service robots for safety inspection of nuclear reactor pressure vessels
Tele-operated climbing and mobile service robots for remote inspection and maintenance in nuclear industry
Superradiant and Aharonov-Bohm effect for the quantum ring exciton
The Aharonov-Bohm and superradiant effect on the redaitive decay rate of an
exciton in a quantum ring is studied. With the increasing of ring radius, the
exciton decay rate is enhanced by superradiance, while the amplitude of AB
oscillation is decreased. The competition between these two effects is shown
explicitly and may be observable in time-resolved exeriments.Comment: 4 pages, 2 figures, to appear in Solid State Communications (2004
Intelligent legged climbing service robot for remote maintenance applications in hazardous environments
Impact of Subleading Corrections on Hadronic B Decays
We study the subleading corrections originating from the 3-parton (q\bar q g)
Fock states of final-state mesons in B decays. The corrections could give
significant contributions to decays involving an \omega or \eta^{(\prime)} in
the final states. Our results indicate the similarity of \omega K and \omega
\pi^- rates, of order 5\times 10^{-6}, consistent with the recent measurements.
We obtain a_2(B\to J/\psi K)\approx 0.27+0.05i, in good agreement with data.
Without resorting to the unknown singlet annihilation effects, 3-parton Fock
state contributions can enhance the branching ratios of K\eta' to the level
above 50\times 10^{-6}.Comment: 5 pages, 5 figures, revtex4; some typos corrected, a new figure and a
reference added, more explanations for the calculation provided, to appear in
Phys. Rev.
Orientations of two coupled molecules
Orientation states of two coupled polar molecules controlled by laser pulses
are studied theoretically. By varying the period of a series of periodically
applied laser pulse, transition from regular to chaotic behavior may occur.
Schmidt decomposition is used to measure the degree of entanglement. It is
found that the entanglement can be enhanced by increasing the strength of laser
pulse.Comment: 4 pages, 4 figures, to appear in Chem. Phys. Lett.(2004
Propagation inhibition and wave localization in a 2D random liquid medium
Acoustic propagation and scattering in water containing many parallel
air-filled cylinders is studied. Two situations are considered and compared:
(1) wave propagating through the array of cylinders, imitating a traditional
experimental setup, and (2) wave transmitted from a source located inside the
ensemble. We show that waves can be blocked from propagation by disorders in
the first scenario, but the inhibition does not necessarily imply wave
localization. Furthermore, the results reveal the phenomenon of wave
localization in a range of frequencies.Comment: Typos in Fiures are correcte
Test of Replica Theory: Thermodynamics of 2D Model Systems with Quenched Disorder
We study the statistics of thermodynamic quantities in two related systems
with quenched disorder: A (1+1)-dimensional planar lattice of elastic lines in
a random potential and the 2-dimensional random bond dimer model. The first
system is examined by a replica-symmetric Bethe ansatz (RBA) while the latter
is studied numerically by a polynomial algorithm which circumvents slow glassy
dynamics. We establish a mapping of the two models which allows for a detailed
comparison of RBA predictions and simulations. Over a wide range of disorder
strength, the effective lattice stiffness and cumulants of various
thermodynamic quantities in both approaches are found to agree excellently. Our
comparison provides, for the first time, a detailed quantitative confirmation
of the replica approach and renders the planar line lattice a unique testing
ground for concepts in random systems.Comment: 16 pages, 14 figure
Preparation and ferroelectric properties of (124)-oriented SrBi4Ti4O15 ferroelectric thin film on (110)-oriented LaNiO3 electrode
A (124)-oriented SrBi4Ti4O15 (SBTi) ferroelectric thin film with high volume
fraction of {\alpha}SBTi(124)=97% was obtained using a metal organic
decomposition process on SiO2/Si substrate coated by (110)-oriented LaNiO3
(LNO) thin film. The remanent polarization and coercive field for
(124)-oriented SBTi film are 12.1 {\mu}C/cm2 and 74 kV/cm, respectively. No
evident fatigue of (124)-oriented SBTi thin film can be observed after
1{\times}10e9 switching cycles. Besides, the (124)-oriented SBTi film can be
uniformly polarized over large areas using a piezoelectric-mode atomic force
microscope. Considering that the annealing temperature was 650{\deg}C and the
thickness of each deposited layer was merely 30 nm, a long-range epitaxial
relationship between SBTi(124) and LNO(110) facets was proposed. The epitaxial
relationship was demonstrated based on the crystal structures of SBTi and LNO.Comment: 11 pages, 4 figures, published in Journal of Materials Science:
Materials in Electronics (JMSE), 19 (2008), 1031-103
- …
