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Abstract

We obtain the rate of decay of the smallest eigenvalue of the Hankel matrices

(/ tj+kW2(t)dt>

7 J.k=0

n

for a general class of even exponential weith% = exp(—2Q) on an intervall. More precise
asymptotics for more special weights have been obtained by many authors.
0 2004 Elsevier Inc. All rights reserved.

1. Theresult

Let I = (—d, d), where O< d < co. Let Q:1 — [0, 00) be continuous andv? =
exp(—2Q) be such that all the moments

/ﬂ'wz(t)dt, j=0,1,2, ...,
1

exist. Form the positive definite Hankel matrix
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H, = (/ tI kW2 dt)

I J,k=0

n

and denote its smallest eigenvalueXjy The focus of this paper is the rate of decay of the
smallest eigenvalug, of H,,.

Many authors have investigated the asymptotic behaviour,dsn — oco. For ex-
ample, Widom and Wilf investigated the behaviourigffor weights on a finite interval
satisfying the Szegé condition [13]. For the Hermite weightx) = exp(—x?/2), Szegd
[11] established the asymptotic

Ay = 213457320 1/4 exp(—2(2n)1/2)(1+ 0(1)),

with similar results for Laguerre weights. The first author, Berg and Ismail [2] showed
that A,, remains bounded away from O iff the moment problem Wt is indeterminate.
Moreover, the first author and Lawrence [3] established asymptotic behavidyr fof
weights on(0, co) such as exg-x#), B > 0. Beckermann has explored condition numbers
for Hankel matrices [1].
It is well known thath,, is given by the Rayleigh quotient
; ‘)_(TH"X. n+1
An_m|n{ Ty XeC \{Q}}.

Corresponding to any of these vectéfs= (xq, x1, X2, ..., x,)T, we can define a polyno-
mial

n
P(z)= ijzj.
j=0

Using the definition ofH,,, we see that we can recast the Rayleigh quotient in the form

A —min{ Ji1PPW?
" (1/2n) [7_|P(ei®)[2do

: deg P) < n} 1)

This extremum property, very similar to the extremal property of Christoffel functions, is
the basis for the analysis in this paper.

Before we define our class of weights, which is the even case of the weights in [7], we
need the notion of a quasi-increasing function. A funcgoi0, d) — (0, co) is said to be
quasi-increasing if there existsC > 0 such that

g(x)<Cg(y), O0<x<y<d.
Of course, any increasing function is quasi-increasing.

Definition 1.1 (General exponential weights). Let W = ¢~ whereQ : I — [0, oo) is even
and satisfies the following properties:

() Q' is continuousin/ andQ(0) =0;
(b) Q" exists and is positive i \ {0};
(€) lim;—4— Q(t) = oo;
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(d) The function

tQ' (1)
T@®):= , 0,
() 00) t#

is quasi-increasing if0, d), with
TtH)>A>1 te(0,d);
(e) There exist€'1 > 0 such that

0"(x) < C1|Q/(x)|,
10" (x)] Q(x)

a.ex e (0,d).

Then we writeW e F(C?).

The simplest case of the above definition is whHea R and T is bounded. This is
the so-called Freud case, for the boundednegs foircesQ to be of at most polynomial
growth. A typical example is

Q) =1x|*, xeR,

wherex > 1. A more general example satisfying the requirements of Definition 1.1 is
0 (x) = expy(|x|”) — exp,(0),

whereo > 1 and¢ > 0. Here we set exjix) := x and for¢ > 1,
exp, (x) = exp(exp(exp. ..expx)))

£ times

is thefth iterated exponential.
An example on the finite intervdl= (-1, 1) is

o) =exp, (1 —xH7) —exp (D), xe(-11),

wherea > 0 and¢ > 0.
In analysis of exponential weights, an important role is played by the Mhaskar—
Rakhmanov-Saff numbey, € (0, d), u > 0, which is the unique root of the equation

1
2 [ ausQ'(ays)
U=— ds.

3 ) V152
One of the features that motivates their importance is the Mhaskar—Saff identity [9]

1PWILoy =IPWILsl—an.anl>

valid for all polynomialsP of degree< n. Throughout(, C1, C2, ... denote positive con-

stants independent af x, r and polynomialsP of degree at mosi. We writeC = C(}),

C # C()) to indicate dependence on,iadependence of a parameterThe same symbol

does not necessarily denote the same constant in different occurrences. Given sequences
of real numbersc,) and(d,) we write

cp ~dy
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if there exist positive constang andC» such that
Ci1<cn/dy <C2

for the relevant range of. Similar notation is used for functions and sequences of func-
tions. We shall prove

Theorem 1.2. Let W beevenand W € F(C?). Thenfor n > 1,

for1r [
An ~ [ exp(—Z/ |Og[— +./1+ = ] ds). (2)
ay ag a?
0

One may recast this estimate in a number of other ways, for example,

n
1
Ap ~ /iexp<—2/arcsinl‘(—) ds).
dn 0 dg

An integration by parts shows that

ap
1 1 b
A ~ /iexp -2 nlog[—+ 1+—2}+/7’dt , €))
an an aj / /1412

whereb; is the inverse function aof;, that is
by, =b(a))=t, t>0.

(For this, one also needs limg; s log(1/as) = 0, which follows from the convergence of
[01 log(2/as) ds, see below.) Another form, which is the initial form in our proof, is

An ~ \/Z exp(2[V7 (i) — cu]), (4)
Aan

whereV is an equilibrium potential, and, is an equilibrium constant—we shall define
these at the end of this section.

Example. Let«e > 1 and
Ox)=Ix", xeR.

Here
ay = Cqu™®, u>0,
where [9]
c.— <2a—211(a/2)2>1/01.
I()

Using (2), the Maclaurin series expansion [5, p. 51]

oo

2\ _ Nk (2k)! 2%+1
log(x + v1+x )_kgo( YV rmrarns KIS
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and some straightforward estimations, we obtain

1/2)(1-1 e k (2k)! a, 1
2 e 12110 gy o 1 : n ,
non =" ];) T e BTy

providedw is not an odd integer. i is an odd integer, we obtain instead

[(«—3)/2]

(/2 (1-1/a) _ PN’ (2Kk)!

—2k—1
a,

) @12 (a — 1)' -
2(logn)(—1) 227 1(((@ — 1)/2)))%a “)

In both estimates ] denotes the greatest integgrc. In particular, for the Hermite weight
a = 2, this gives

An ~n 4 exp(—4vn),

which accords with Szegé's result, if we recall thatx) = x2/2 in his formulation.

This paper is organised as follows: in Section 2, we establish a general lower bound
for A,,, using the same methods that were used in [7] to establish lower bounds for Christof-
fel functions. In Section 3, we establish upper boundsifpby discretising a potential.
Then in Section 4, we complete the proof.

Throughoutthe paper, we assume that F(C?). (In fact, with more work, our results
hold for the class#(Dini) in [7], but in terms of weights defined by explicit formulas, the
difference is insubstantial.) For eaclk- 0, it is known that there is a honnegative density
functiono; on[—ay, a,;] with total mass,

ag
/ oi(s)ds =t, (5)
Za
satisfying the equilibrium condition
ag
/'09 |xis|at(5)dS+Q(x)=Ct’ x € [—ar, ar]. (6)

—a;

We callo; theequilibrium density of mass, ¢; the equilibrium constant for 7, and

1
|z —s|

V“’(z):/log o:(s)ds

the correspondingquilibrium potential. One representation fet; is

Va2 =x2 [ 0ls)— ') ds

2
4 S —X 2 2
Za, ar —s

G[(x): s xe(_ahal‘)s (7)
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and one for; is
t

2
ct =/|Oga—ds.
S

0
See [7, Chapter 2].

2. Lower boundsfor A,
The result of this section is

Lemma2.l. Let 0 <n < /2. Then

AnlgCl{i/eXp(—Z[V”’l(eiG)—cn])dQ—i- sup exp(—2[Vo(e'?) —c,]) -
2 6el0.n]
(8)

—7T

Here C1 dependson , not on n.

Throughout we fix: and set
A =[—ay, a,].

Givenx ¢ A, we usega(z, x) to denote the Green’s function f@r\ A with pole atx, so
thatga(z, x) + log| z — x | is harmonic as a function afin C \ A and vanishes om.
Whenx € A, we setga(z, x) = 0, and whemnx = oo, the Green'’s function is denoted by
gA(z). We also let

o) =z+vVz2-1, zeC\[-11],

denote the conformal map @f\ [—1, 1] onto the exteriofw: |w| > 1} of the unit ball.
Then the Green'’s function fdZ \ A with pole atoo admits the representation

)l

For further orientation on the potential theory we use, see [10] or [7]. We alsH UsEto
denote the Hilbert transform of a functighe L1(R), so that

1 o0
HIfI@) = % ar,

where the integral must be taken in a Cauchy principal value sepsg iieal.

ga(z) =log

Proof of Lemma 2.1. We use the extremal property (1), in the form

T

A;lzsup%/|p(ei9)‘2d9//|pw|2,
1
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where the sup is taken over all monic polynomi&lef degree< n. Accordingly letP be
a monic polynomial of degree < n. If v denotes a measure of total masghat places
unit mass at each zero &f, then log P| admits the representation

log|P(2)| =/Iog|z—t|dv(t).
Form
G(z)=/(|Og|z—t|+gA(z,t))dV(t)+V""(z)—cn+(n—m)gA(z).

Since logz — t| + ga(z, t) is bounded and has finite limit as— ¢, we see thaG is
harmonic inC \ A. Moreover, since as — oo, V% (z) = —nlog|z| + o(1) andga(z) =
log(2/a,) +log|z| +o(1),

lim G(Z)=/gA(oo, t)dv(t)—cn+(n—m)loga£=:G(oo).

|z]—>00

ThusG is harmonic inC \ A, and hence has a single valued harmonic conjugate there,
G (z) say. Hence the function

.5 4
f (@) =exp(G(2) +lG(z))/¢(—)
an
is analytic inC \ A, with a simple zero ato. Cauchy’s integral formula for the exterior of
a segment gives far¢ A,

1 [0S,

2mi xX—z
A

1
fl@)= E[H[f+](z) — H[f-1()]. 9)

where fi. denote boundary values gfon A from the upper and lower half planes. Note
that we setfy = 0 outsideA. Next,

| fe(0)| =exp(G(x)) =|PW|(x), x € (—an,an), (10)

by (6). Moreover, as the Green'’s functigpn is nonnegative,

2 On _ i
1f ()] = exp(G(@)/‘qs(a)‘ > |P()| exp(V* (2) cn)/‘qs(an)‘,
z7¢ A. (11)
The representation (9) gf gives forz ¢ A,

12 12
1 2 dx
‘f(Z)‘gg(/(er(x)—f(x)) dx) ( m)
A

A
1/2
1 2 / T 172
< — |PW| .
bid [Imz]
A

Combining this and (11) gives
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1 -n T—n
E[ / +/ ]|P(e"9)|2d9

—m+n n

(fre) ()

1 U » £\ |2
XZ[ / +/ :|exp(—2[V""(e’ )—cn])‘qﬁ(a) do
—mtn o n
(1+2/an)2 o 0
sy </|PW| ) /exp(—Z[V (€'”) — cn]) db. (12)

The rest of the integral is more difficult. First, note that since (11) holdsVhdz) =
Von(z) = Vo (—2),

1 n T+
- 0|2
zn[/Jr/ ]|P(e )|“do

- T
i Ar2a2[ T s
< sup exp(—=2[V7 (') —cn]) —=—— /+/ |f ()| *do
f<l0,1] 21 LA

< sup exp(—2[Vo(e'?) — cu])
0¢€[0,n]

142/a)? [ . _
« % /(IH[f+](e’9)|2+ HLf_1()|?) do

by (9). Now sincefy are continuous omt, and are 0 offA, they are trivially inL2(R),

and thenH|[ f1] belong to the Hardy 2-space of the upper-half plane [6, p. 128]. Next,
normalised Lebesgue measure on the semi-circular arc of the unit circle in the upper-half
plane is a Carleson measure with respect to that upper-half plane. So we can use Carleson’s
inequality to replace the integral over the uppad lower halves of the unit circle, by an
integral along the real axis:

f|H[fi](e"9)|2d9<c/ |HLf210)] dx.

with C independent of . For a discussion of Carleson’s inequality and Carleson measures,
see [4] or [6]. Then

1 n T+n
E[/JF/ ]|P(e"9)|2d9
—-n T
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<c sup exp(-2[v (e — i)} / (|HLA [P + | HL-10]P) do,
6€[0,n] “

with C independent of, P (andn). As the Hilbert transform is an isometry 66(R), we
obtain from (10)

n T+
%[/4‘/ ]|P(ei9)|2d9<2c[ sup eXF(—Z[V‘Tn(eiH)_cn])}/|PW|2'

0€[0,n]
-n  mT—n 1

Adding this and (12) gives, for all monic polynomials of degtee,
1 T
= 0|2 2
2ﬂ/|P(e )| dG//|PW|
- 1

<C1{i/exp(—2[v“"(e"9)—cn])d9+ sup eXp(—Z[V""(eiQ)—c,l]),.
2 J. 6<[0,1]

Now the extremal property (1) gives the lemman

We note that this lemma holds more generally than for our class of weightkes
not need to be even or satisfy any smoothness restrictions. With minor modifications, the
lemma holds for any exponential weiglitt for which the equilibrium measure is supported
on a single interval.

3. Upper boundsfor A,
In this section, we use Totik’s method of discretisation of a potential [12] to obtain a
polynomial that gives an upper bound to match the lower bound in the previous section.

The details are similar to those in [7, Chapter 7].

Theorem 3.1. There exist C1 and C2 and for large enough n, a polynomial P, of degree
< n suchthat for |z| = 1 with arq(z) € [x/4, 37 /4],

|Pa(2)] = Crexp(—=[V7" (2) — cu]) (13)
and
/|PW|2<C2. (14)
1
Moreover for such n,
3r/4
> cs / exp(—2[Vo (e') — ¢, ]) df, (15)
/4

with C3 independent of n.
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Throughout, we let;” denote the density, contracted td—1, 1] so that
o, ()= O n(ans), s €(—1,1),
n

and

/cr,j‘:l. (16)
-1
For a fixedn, we determine points
—l=n<n<br<---<tp=1
and intervals
Ii=[tj,tjy1), 0<j<n—1, [j|=tj41—tj,
with

Moreover, we use Totik's idea [12] of the “weight point” or “centre of mass”
Tj+1 fit1
£ = / m,;"(s)ds//a;(s)dse(t,,;,ﬂ),
i i
so that
Lj+1
[ =spoiwas=o (17)
]

We define

n—1
Ru(2)=]]—¢p,

j=0
and will prove
Lemma 3.2. There exists a positive integer L such that for large enough n, and 2/a, >
lu| > 1/(2a,) with argu) € [r/4, 37 /4],

| Ry ()| exp(n Vo () = C1 (18)
and

|Ry(x)|exp(nVor (x)) < C21—x?) 7L, xe(-1,1). (19)

Later on, if/ is unbounded, we shall “damp dowR;, on I by multiplying with another

polynomial so that we obtain (14). For the proof of Lemma 3.2, we need properties of the
discretisation points:
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Lemma 3.3.

(@) Uniformlyinnand1< j <n—2,
1 1
()~ 0y () ~ oy (tjp1) ~ ——— tj,tjs1). 20
0, (1)) ~ 0y (s) ~ oy (tj41) PTRIETTI s €[ty tjq1] (20)
(b) Moreover, if j =0,

N " 1 1
0, (s) < Co,, (tj41) ~ m ~ il
J J

s €[, tj41l, (21)
with an analogous assertion if j =n — 1.
(c) Thereexists C > O suchthat for n > 1, and u, v € (—1, 1) with
u—v| < (1—u?)?®, (22)
we have
o, (u)/o, (v) <C.
Proof. (a), (b) These are Lemma 7.16 in [7, p. 194].
(c) Note that the class of weightE(C?) we treat here lies in the class(Lip(1/2))

in [7] (see [7, p. 13]) and hence we may apply Theorem 6.3(b) in [7, pp. 147-148] with
¥ (u) = ul/2. We obtain fom > 1 andu, v € (-1, 1),

_ 1/4
o7 ) — )| < C < lu —v| ) _
VI—=Tv[\1—maxX]ul,|v]}

Moreover, from Theorem 6.1(b) in [7, p. 146],
oy (v) = CvV1—v2
Then subject to (22), we obtain

1—jul~1—|v|~1—u?,

SO

C

_ /4
\(1_|M|)5/4|u v < C. |

o, ()
o (v)

Proof of (19) of Lemma 3.2. We see that

n—1 n—1
log| R, (u)| +nvf’»?‘(u)=—2/|og :_—s (no () ds ==Y T}, (23)
=07, 4 j=0

Now we proceed in five steps.

Sep 1. An inequality for I';. Fix u € [—1, 1] and choosgjp such thatu e I;,. Since
[1;| ~ |Ij+1] (by Lemma 3.3), we claim that there exists (0, 1), independent of, j
andn, such that foj — jo| > 2,

Sizs o . (24)

Y]
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To see this, suppose, for example, that jo — 2, so that/; is to the left of/;,_,. Then
u—¢&;>0and

§ios JEiztm tztm MWL

u—=§ = tjp—§& = tip—tj i1+ 1141l
(In the third inequality, we use the fact that the ratio decreases as we degrgase (24)
holds in this case. The case wheres jo + 2 is similar. Next, a Taylor series expansion

gives
E-s\_&-s 1 1 <g,~—s)2
’ Iog<1+u_é_l) u—t8 2a+n2\u=g )"

wherer is between O an€t; —s)/(u — &;). Asr > —,
u-—=s

JE-s 1 1 \?
u—&j| " u—¢g 2(1—-7)2\distw,1;)/)
Then the definition (17) of; gives

u—
log
u—

log

r>-——"t ( 4] )2
77202\ dist(u, 1;))
Step 2. I'; with I; far from I;,. Consider thosg with |j — jo| > 2 and
dist(u, I;) > (1—u 2)5,
Let S denote the set of all such indicgsHere the first restriction op ensures that
dist(u, 1;) > C|I|
and then using the bound dfy from Step 1,
I; ds
2. Ti>- Zonst|(u|1) —C / Is — ul

jes (s€10.1]: |s—u|>C1(1-u?)S)

1—u?
> Clog .

Step 3. I'; with I; close, but not too close, to 7,. Consider thosg with |j — jo| > 2
and

dist(u, I;) < (1 — u?)®.
Let 7 denote the set of all such indicgsNote that from Lemma 3.3(a), (b), and then (c),
uniformly for suchj, and somé < {j, j + 1},

11 <cC *(u)

II,OI o, (tk)
Then

|1;] / ds
§ Ii>-C § —C|I >
-t i 2 =Clljl ~ dist(u dist(u, 1;)? > —Cllj,| Is —ul2~
Je {51 ls—ul>CalLy}
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Sep 4. I'; with I; very closeto 7,. Now we deal with the at most 3 remaining terifis
with |j — jo| < 1. Here we can apply Lemma 3.3 to obtain, for some constant€, and
C3 (independent of, jo, u andn),

u—=s u—s
szflog — (ncr:(s))ds}/log‘cl”j' (no(s))ds
] I
c ?
2—2 log v ds}CZ/Iongv>—C4.
|Ij|1 C1ll;| C1
J —L3

Thus

Y, TIj>-Cs

Jili—jol<1
Sep 5. Finish the proof of (19). Combining (23) and all the estimates above gives for
ue(—11),

log| R, ()| +nV7 (u) <C —Clogl—u?). O

Proof of (18) of Lemma 3.2. We use thd; defined above. Fare I; andu € C,

u— 1 gi—-s? 1 ( £ —s|? gj—s))
lo =—log|l+ =—log| 1+ +2R
gu—j 2 9 u—E&; 2 9 u—=E&; u—E&;
1 —s|? 1
g_ R - . | 9
2u—¢| © e<u—gj)(‘§’ $)

S0 integrating ovef; and using (17) gives
|1;12 / . iyl 7?
I'< ——— d O0<z|=—"7—1.
IS —¢;2 noy ($)ds +0< 5 dist(u, 1)
1

Suppose now that for sone> 0,
1
x (u) ::sup{|1j|: dist(u,lj)<§}<C|lmu|. (25)

Then

x () [1;]
2. i< 2 dist(u], 1;)?

jo distu,1;)<1/8 2 j: distu, 1,)<1/8

|1;]
<C1X(u) Z 2 . 2
i diste <1/ (Imu)? 4 dist(Reu, I;)

o0
ds
<C < Cs, 26
ZX(M)/(Imu)2+|Reu—s|2 3 (26)
—00
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by (25). Moreover,
Y. TG ). ILI<Cs
j: dist(u,1;)>1/8 j: dist(u,1;)>1/8
Combining this, (23) and (26) gives
| Ry ()| @xp(n V" (1)) > C,
provided (25) holds. Now we show that (25) does hold if
a>|u|>2‘% and argu) e [%3%} (27)

We consider two subcases.

(D I is a finite interval. In this case, — d < oo asn — oo. Then the condition (27)
ensures thatimu| > C, with C independent ofi andn. Hence (25) is immediate.

(1) I = (=00, 00). In this caser, — oo, n — oo, and (27) implies thafu| < 1/8 for
large enougt. Then forn > no,

. 1 11
distu.Ip<g = 1Lic{-33)
(The thresholdzo does not depend on, j, jo,n.) Since (see (7.89) and (7.84) in [7,
pp. 187-188]),

Ii C 11 = |1 1
J 3’3 T n

(with constants in the- relation independent of), and sincd Imu| ~ 1/a,, we see that
(25) reduces to

1 C
g

~ E)

n an
which is true as
a, =o(n).

(See (3.30) in [7, p.72] and note that in the even &gse a,.) O
From this we deduce

Lemma 3.4. Let L beasin Lemma 3.2 There exist polynomials R of degree < n + 2L
such that for 1/2 < |z] < 2with arg(z) € [ /4, 3n /4],

|R%(2)| exp(V7" (z) — ¢n) > C1 (28)
and

|REW|<C2 inl. (29)
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Proof. Observe that

Vo (a,u) = / |Og

—dn

1
crn t)dt =n / log 70:@) ds
s

nS|

=n |Og— +nV (u).
an
We set

Ri(z):=(1— (a;lz)z)LRn (a,12) eXp<c,, —nlog i),
an
whereL is as in Lemma 3.2. We see that
| R (ant)| €xp(V " (anu) — ) = 11— u?|E| Ry (w)| exp(V " ()

and (28) follows from (18), on setting= a,u. (Note that|1 — 2| is bounded below.)
Next, forx € [—1, 1], from (6),

|REW | (anx) = | R} (anx)| exp(V 7 (anx) — c,)
= (1 —x)E|Ry(x)|exp(nVr (x)) < C
by (19). Then restricted range inequalities [7, p. 96] give
[RW ],y <CIRIW] gy <€ O

[—an,an]

Although the sup-norm oR’ W is bounded, all we can deduce from this last lemma is
that theL, norm over! is O(a,). This is a problem if, — oo, n — oo. To fix this, we
multiply R} by a polynomial of degre® (a,) that behaves lik¢l + x2)~Lon[—ay, a,].

But that would give a polynomial of degree+ O (a,), rather tham. To avoid this, we
show that the polynomial®;, with m =n — O(a,) still satisfy the conclusions of the
previous lemma, and for this we need

Lemma3.5. Let K > 0. Assume that

lim a, = occ.
n—o0
Assumethat for n > 1, we are given an integer m = m(n) < n with
n—m= 0(a,), n— oo.

Thenfor u| < K

(Vo @) = en) = (V" () — em) > —C.

Proof. We use [7, Eq. (2.34), p. 46]

n
2
c,,:/loga—ds
0 )
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and [7, Eqg. (2.35), p. 46]

n

O'n(t):/VAS(t) ds,
0
wherey,, is the equilibrium density for the interval; = [—ay, a,], so that

1
77 t - 9 S/
YA, (t) — { - /a527,2 E( ag as)

0, otherwise.

The Green'’s function fo€ \ Ay with pole atoo has the representations

u u\?
as as
n n

2
_VUn(u)+cn:/log|u—t|</)/4‘(t)ds>dt+/|og—ds
dg
0

0

2
gAS(u)zfloglu—tlms(t)dtJrloga— =log

Then we see that

n

:/gAS (u)ds. (30)
0
So,

n

(V"" (u) — cn) — (V(’"’ (u) — cm) = —/gAS (u)ds.

m

2
() o
ag ag

Here fors € [m, n],

u 12
+1)

ga,(u) =log Bl BT ek
dg Adg
K
< Iog(1+2 x ) <2—.
ds am
Thus
n
n—m an
_/gAS(M)dS>—C >-CL>-C
am am

m

The last relation follows ag& ~ n = a,, ~ a, (see (3.27)in [7,p. 72]). O
We turn to the

Proof of Theorem 3.1. If (a,) is bounded, then we can just chod%e= R;; and the asser-
tions (13) and (14) of Theorem 3.1 follow from the corresponding ones in Lemma 3.4. Now
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we consider the case whe(®,) is unbounded. Fat > 1, let¢ = £(n) denote the greatest
integer< a, — 2L. By Corollary 2 in [8], there exist for large enoughpolynomialsS, of
degree< ¢ with

1
Se(x) ~ 112 x € [—2ay, 2a,],

and
|Se@|=C, 2= :
’ 2
Then we set
Z
Pu(z) = R;lk_g (2)Se <§)a

a polynomial of degree n. Then in[—ay, a,], (29) gives

‘Pn(x)|W(x) < m,

SO

Restricted range inequalities (see Theorem 4.2 in [7, p. 96]) then give (14). Moreover, (28)
and Lemma 3.5 witlmw =n — ¢ give for|z| = 1 with argz) € [ /4, 37 /4],

|Pa(@)| = C|R:_,|(2) = Cexp(—[Vo(2) — ca—i]) = CrEXP(—[V" (2) — €1 ).
So we have (13). Finally, the extremal property (1}pfgives (15). O

4. Proof of Theorem 1.2

If we combine Lemma 2.1 and Theorem 3.1, we see that the following three assertions
together give Theorem 1.2.

3n/4
0} % / exp(=2[V(e) — ¢, ]) do ~ \/‘;zexp(—z[v"" (i) — cn]). (31)
/4

(I) Given0< n < /2, there exist&€ > 0 such that

exp(—2[Vo(e'?) — cu]) ) exp(—=2[ Vo (i) — cn]) < exp(-C—), (32)

uniformly forn > 1 andd € [—n, n]U [7r —n, 7 + n].

D) v"n(i)—c,,:_/log(iJr /1+i2>ds. (33)
as ag
0
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(Recall thatn/a, — oo asn — 00.)

Proof of (1), (I1). Observe that as,, is even,

an
2
. , t
Vor(e'?y — von(i) =/|09 T %0 on(t)dt
0

ap
1 | 412 cod6
= > og 1+7|t2—62i9|2 o, (t)dt.
0

Here for allo andt,

412cof6 _ 42cofH
—— > (<
|t2 _ 6219|2 (t2 + 1)2

i)

while for 6 € [ /4, 37 /4], we have~ uniformly in 6, ¢, instead of just=. Then we obtain
forall 0 € [—m, 7],

ap 2
On L0\ _ Yy Oon(; !
Ve —v (l)>C(CO§9)/7(t2+1)2crn(t)dt (34)
0
and for6 e [ /4, 3 /4],
0, i0 On /e § T’ t2
\% (e )—V (l)~(CO 9)/m0n(t)dt. (35)
0

In all cases, the constants are independent 6f Now we need the estimates

Gn(t) g ) re (_an:an):

n
2 2
a;—1t

and
o n n ; 1 1
~—~ — el —=an, =za, ).
On 22— a 5> 5tn

These estimates follow from Theorem 1.11in [7, pp. 17-18]. Let us substitute these bounds
in (34) and (35). Some straightforward estimation gives foé all[—r, 7],

Vo ey — Vo (i) > C L (co), (36)
an
and forf € [ /4, 37 /4],
VO (el®) — Vo (i) ~ = (cof6). (37)
an

(For6 = /2, we interpret 0 as 1.) Now (36) directly gives (32). Moreover, this last
relation gives for somé€'1, Co, Cs,
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3rn/4
1 .
= / exp(—2[ V7 () — u]) d6 ] exp(—2[Vor (i) — cu])
/4
1 3n/4
> o / exp(—Clc:l—ncos%)de
/4

3rn/4 2
>1/ex Gl (o-2) Vao>cs /2
/27_[ Zan 2 = L3 n
/4

Similarly (37) gives a matching upper bound, and so we have (l) alsp.

Proof of (111). From (30),
n
cn — V(@) =v/gAs(i)ds.
0
Sinceg 4, admits the representation

4
=+

g4, (z) =log
ds

we obtain (33). O
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