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Abstract

We obtain the rate of decay of the smallest eigenvalue of the Hankel matrices(∫
I

tj+kW2(t) dt

)n

j,k=0

for a general class of even exponential weightsW2 = exp(−2Q) on an intervalI . More precise
asymptotics for more special weights have been obtained by many authors.
 2004 Elsevier Inc. All rights reserved.

1. The result

Let I = (−d, d), where 0< d � ∞. Let Q : I → [0,∞) be continuous andW2 =
exp(−2Q) be such that all the moments∫

I

tjW2(t) dt, j = 0,1,2, . . . ,

exist. Form the positive definite Hankel matrix
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], we
Hn =
(∫

I

tj+kW2(t) dt

)n

j,k=0

and denote its smallest eigenvalue byλn. The focus of this paper is the rate of decay of
smallest eigenvalueλn of Hn.

Many authors have investigated the asymptotic behaviour ofλn as n → ∞. For ex-
ample, Widom and Wilf investigated the behaviour ofλn for weights on a finite interva
satisfying the Szegö condition [13]. For the Hermite weightW(x) = exp(−x2/2), Szegö
[11] established the asymptotic

λn = 213/4π3/2en1/4 exp
(−2(2n)1/2)(1+ o(1)

)
,

with similar results for Laguerre weights. The first author, Berg and Ismail [2] sho
that λn remains bounded away from 0 iff the moment problem forW2 is indeterminate
Moreover, the first author and Lawrence [3] established asymptotic behaviour ofλn for
weights on(0,∞) such as exp(−xβ), β > 0. Beckermann has explored condition numb
for Hankel matrices [1].

It is well known thatλn is given by the Rayleigh quotient

λn = min

{
X̄T HnX

X̄T X
: X ∈ C

n+1 \ {0}
}
.

Corresponding to any of these vectorsX = (x0, x1, x2, . . . , xn)
T , we can define a polyno

mial

P(z) =
n∑

j=0

xj z
j .

Using the definition ofHn, we see that we can recast the Rayleigh quotient in the form

λn = min

{ ∫
I
|P |2W2

(1/(2π))
∫ π

−π |P(eiθ )|2 dθ
: deg(P ) � n

}
. (1)

This extremum property, very similar to the extremal property of Christoffel function
the basis for the analysis in this paper.

Before we define our class of weights, which is the even case of the weights in [7
need the notion of a quasi-increasing function. A functiong : (0, d) → (0,∞) is said to be
quasi-increasing if there existsC > 0 such that

g(x) � Cg(y), 0 < x � y < d.

Of course, any increasing function is quasi-increasing.

Definition 1.1 (General exponential weights). Let W = e−Q whereQ : I → [0,∞) is even
and satisfies the following properties:

(a) Q′ is continuous inI andQ(0) = 0;
(b) Q′′ exists and is positive inI \ {0};
(c) limt→d− Q(t) = ∞;
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(d) The function

T (t) := tQ′(t)
Q(t)

, t �= 0,

is quasi-increasing in(0, d), with

T (t) � Λ > 1, t ∈ (0, d);
(e) There existsC1 > 0 such that

Q′′(x)

|Q′(x)| � C1
|Q′(x)|
Q(x)

, a.e.x ∈ (0, d).

Then we writeW ∈ F(C2).

The simplest case of the above definition is whenI = R andT is bounded. This is
the so-called Freud case, for the boundedness ofT forcesQ to be of at most polynomia
growth. A typical example is

Q(x) = |x|α, x ∈ R,

whereα > 1. A more general example satisfying the requirements of Definition 1.1 is

Q(x) = exp�
(|x|α)− exp�(0),

whereα > 1 and� � 0. Here we set exp0(x) := x and for� � 1,

exp�(x) = exp
(
exp
(
exp. . .exp(x)

))︸ ︷︷ ︸
� times

is the�th iterated exponential.
An example on the finite intervalI = (−1,1) is

Q(x) = exp�
(
(1− x2)−α

)− exp�(1), x ∈ (−1,1),

whereα > 0 and� � 0.
In analysis of exponential weights, an important role is played by the Mhas

Rakhmanov–Saff numberau ∈ (0, d), u > 0, which is the unique root of the equation

u = 2

π

1∫
0

ausQ
′(aus)√

1− s2
ds.

One of the features that motivates their importance is the Mhaskar–Saff identity [9]

‖PW‖L∞(I ) = ‖PW‖L∞[−an,an],
valid for all polynomialsP of degree� n. Throughout,C,C1,C2, . . . denote positive con
stants independent ofn,x, t and polynomialsP of degree at mostn. We writeC = C(λ),
C �= C(λ) to indicate dependence on, orindependence of a parameterλ. The same symbo
does not necessarily denote the same constant in different occurrences. Given se
of real numbers(cn) and(dn) we write

cn ∼ dn



Y. Chen, D.S. Lubinsky / J. Math. Anal. Appl. 293 (2004) 476–495 479

nc-

of

e

if there exist positive constantsC1 andC2 such that

C1 � cn/dn � C2

for the relevant range ofn. Similar notation is used for functions and sequences of fu
tions. We shall prove

Theorem 1.2. Let W be even and W ∈ F(C2). Then for n � 1,

λn ∼
√

n

an

exp

(
−2

n∫
0

log

[
1

as

+
√

1+ 1

a2
s

]
ds

)
. (2)

One may recast this estimate in a number of other ways, for example,

λn ∼
√

n

an

exp

(
−2

n∫
0

arcsinh

(
1

as

)
ds

)
.

An integration by parts shows that

λn ∼
√

n

an

exp

(
−2

{
n log

[
1

an

+
√

1+ 1

a2
n

]
+

an∫
0

bt

t
√

1+ t2
dt

})
, (3)

wherebt is the inverse function ofat , that is

bat = b(at) = t, t > 0.

(For this, one also needs lims→0+ s log(1/as) = 0, which follows from the convergence∫ 1
0 log(2/as) ds, see below.) Another form, which is the initial form in our proof, is

λn ∼
√

n

an

exp
(
2
[
V σn(i) − cn

])
, (4)

whereV σn is an equilibrium potential, andcn is an equilibrium constant—we shall defin
these at the end of this section.

Example. Let α > 1 and

Q(x) = |x|α, x ∈ R.

Here

au = Cαu1/α, u > 0,

where [9]

Cα =
(

2α−2Γ (α/2)2

Γ (α)

)1/α

.

Using (2), the Maclaurin series expansion [5, p. 51]

log
(
x +
√

1+ x2
)= ∞∑

(−1)k
(2k)!

22k(k!)2(2k + 1)
x2k+1, |x| � 1,
k=0
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and some straightforward estimations, we obtain

λn ∼ n(1/2)(1−1/α) exp

(
−2n

[(α−1)/2]∑
k=0

(−1)k
(2k)!

22k(k!)2(2k + 1)

a−2k−1
n

1− (2k + 1)/α

)
,

providedα is not an odd integer. Ifα is an odd integer, we obtain instead

λn ∼ n(1/2)(1−1/α) exp

(
− 2n

[(α−3)/2]∑
k=0

(−1)k
(2k)!

22k(k!)2(2k + 1)

a−2k−1
n

1− (2k + 1)/α

− 2(logn)(−1)(α−1)/2 (α − 1)!
2α−1(((α − 1)/2)!)2α

C−α
α

)
.

In both estimates, [x] denotes the greatest integer� x. In particular, for the Hermite weigh
α = 2, this gives

λn ∼ n1/4 exp(−4
√

n ),

which accords with Szegö’s result, if we recall thatQ(x) = x2/2 in his formulation.

This paper is organised as follows: in Section 2, we establish a general lower
for λn, using the same methods that were used in [7] to establish lower bounds for Ch
fel functions. In Section 3, we establish upper bounds forλn by discretising a potentia
Then in Section 4, we complete the proof.

Throughout the paper, we assume thatW ∈F(C2). (In fact, with more work, our result
hold for the classF(Dini) in [7], but in terms of weights defined by explicit formulas, t
difference is insubstantial.) For eacht > 0, it is known that there is a nonnegative dens
functionσt on [−at, at ] with total masst ,

at∫
−at

σt (s) ds = t, (5)

satisfying the equilibrium condition
at∫

−at

log
1

|x − s|σt (s) ds + Q(x) = ct , x ∈ [−at, at ]. (6)

We callσt theequilibrium density of masst , ct theequilibrium constant for t , and

V σt (z) =
at∫

−at

log
1

|z − s|σt (s) ds

the correspondingequilibrium potential. One representation forσt is

σt (x) =
√

a2
t − x2

π2

at∫
Q′(s) − Q′(x)

s − x

ds√
a2 − s2

, x ∈ (−at, at ), (7)
−at t
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and one forct is

ct =
t∫

0

log
2

as

ds.

See [7, Chapter 2].

2. Lower bounds for λn

The result of this section is

Lemma 2.1. Let 0 < η < π/2. Then

λ−1
n � C1

{
1

2π

π∫
−π

exp
(−2
[
V σn(eiθ ) − cn

])
dθ + sup

θ∈[0,η]
exp
(−2
[
V σn(eiθ ) − cn

])}
.

(8)

Here C1 depends on η, not on n.

Throughout we fixn and set

∆ = [−an, an].
Givenx /∈ ∆, we useg∆(z, x) to denote the Green’s function forC̄ \ ∆ with pole atx, so
that g∆(z, x) + log | z − x | is harmonic as a function ofz in C̄ \ ∆ and vanishes on∆.
Whenx ∈ ∆, we setg∆(z, x) ≡ 0, and whenx = ∞, the Green’s function is denoted b
g∆(z). We also let

φ(z) = z +
√

z2 − 1, z ∈ C \ [−1,1],
denote the conformal map ofC \ [−1,1] onto the exterior{w: |w| > 1} of the unit ball.
Then the Green’s function for̄C \ ∆ with pole at∞ admits the representation

g∆(z) = log

∣∣∣∣φ
(

z

an

)∣∣∣∣.
For further orientation on the potential theory we use, see [10] or [7]. We also useH [f ] to
denote the Hilbert transform of a functionf ∈ L1(R), so that

H [f ](z) = 1

πi

∞∫
−∞

f (t)

t − z
dt,

where the integral must be taken in a Cauchy principal value sense ifz is real.

Proof of Lemma 2.1. We use the extremal property (1), in the form

λ−1
n = sup

1

2π

π∫ ∣∣P(eiθ )
∣∣2 dθ
/∫

|PW |2,

−π I
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where the sup is taken over all monic polynomialsP of degree� n. Accordingly letP be
a monic polynomial of degreem � n. If ν denotes a measure of total massm that places
unit mass at each zero ofP , then log|P | admits the representation

log
∣∣P(z)
∣∣= ∫ log|z − t|dν(t).

Form

G(z) =
∫ (

log|z − t| + g∆(z, t)
)
dν(t) + V σn(z) − cn + (n − m)g∆(z).

Since log|z − t| + g∆(z, t) is bounded and has finite limit asz → t , we see thatG is
harmonic inC \ ∆. Moreover, since asz → ∞, V σn(z) = −n log|z| + o(1) andg∆(z) =
log(2/an) + log|z| + o(1),

lim|z|→∞G(z) =
∫

g∆(∞, t) dν(t) − cn + (n − m) log
2

an

=: G(∞).

ThusG is harmonic inC̄ \ ∆, and hence has a single valued harmonic conjugate t
G̃(z) say. Hence the function

f (z) := exp
(
G(z) + iG̃(z)

)/
φ

(
z

an

)
is analytic inC̄ \ ∆, with a simple zero at∞. Cauchy’s integral formula for the exterior
a segment gives forz /∈ ∆,

f (z) = 1

2πi

∫
∆

f+(x) − f−(x)

x − z
dx = 1

2

[
H [f+](z) − H [f−](z)], (9)

wheref± denote boundary values off on ∆ from the upper and lower half planes. No
that we setf± = 0 outside∆. Next,∣∣f±(x)

∣∣= exp
(
G(x)
)= |PW |(x), x ∈ (−an, an), (10)

by (6). Moreover, as the Green’s functiong∆ is nonnegative,

∣∣f (z)
∣∣= exp

(
G(z)
)/∣∣∣∣φ
(

z

an

)∣∣∣∣� ∣∣P(z)
∣∣exp
(
V σn(z) − cn

)/∣∣∣∣φ
(

z

an

)∣∣∣∣,
z /∈ ∆. (11)

The representation (9) off gives forz /∈ ∆,

∣∣f (z)
∣∣� 1

2π

(∫
∆

(
f+(x) − f−(x)

)2
dx

)1/2(∫
∆

dx

|x − z|2
)1/2

� 1

π

(∫
∆

|PW |2
)1/2(

π

| Imz|
)1/2

.

Combining this and (11) gives
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2π

[ −η∫
−π+η

+
π−η∫
η

]∣∣P(eiθ )
∣∣2 dθ

�
(∫

∆

|PW |2
)(

1

π sinη

)

× 1

2π

[ −η∫
−π+η

+
π−η∫
η

]
exp
(−2
[
V σn(eiθ ) − cn

])∣∣∣∣φ
(

eiθ

an

)∣∣∣∣2 dθ

� (1+ 2/an)
2

π sinη

(∫
I

|PW |2
)

1

2π

π∫
−π

exp
(−2
[
V σn(eiθ ) − cn

])
dθ. (12)

The rest of the integral is more difficult. First, note that since (11) holds andV σn(z̄) =
V σn(z) = V σn(−z),

1

2π

[ η∫
−η

+
π+η∫

π−η

]∣∣P(eiθ )
∣∣2 dθ

� sup
θ∈[0,η]

exp
(−2
[
V σn(eiθ ) − cn

]) (1+ 2/an)
2

2π

[ η∫
−η

+
π+η∫

π−η

]∣∣f (eiθ )
∣∣ 2 dθ

� sup
θ∈[0,η]

exp
(−2
[
V σn(eiθ ) − cn

])

× (1+ 2/an)
2

4π

π∫
−π

(∣∣H [f+](eiθ )
∣∣2 + ∣∣H [f−](eiθ )

∣∣2)dθ,

by (9). Now sincef± are continuous on∆, and are 0 off∆, they are trivially inL2(R),
and thenH [f±] belong to the Hardy 2-space of the upper-half plane [6, p. 128]. N
normalised Lebesgue measure on the semi-circular arc of the unit circle in the upp
plane is a Carleson measure with respect to that upper-half plane. So we can use Ca
inequality to replace the integral over the upper and lower halves of the unit circle, by a
integral along the real axis:

π∫
−π

∣∣H [f±](eiθ )
∣∣2 dθ � C

∞∫
−∞

∣∣H [f±](x)
∣∣2 dx,

with C independent off . For a discussion of Carleson’s inequality and Carleson meas
see [4] or [6]. Then

1

2π

[ η∫
+

π+η∫ ]∣∣P(eiθ )
∣∣2 dθ
−η π−η
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� C
{

sup
θ∈[0,η]

exp
(−2
[
V σn(eiθ ) − cn

])} ∞∫
−∞

(∣∣H [f+](x)
∣∣2 + ∣∣H [f−](x)

∣∣2)dx,

with C independent off , P (andn). As the Hilbert transform is an isometry ofL2(R), we
obtain from (10)

1

2π

[ η∫
−η

+
π+η∫

π−η

]∣∣P(eiθ )
∣∣2 dθ � 2C

{
sup

θ∈[0,η]
exp
(−2
[
V σn(eiθ ) − cn

])}∫
I

|PW |2.

Adding this and (12) gives, for all monic polynomials of degree� n,

1

2π

π∫
−π

∣∣P(eiθ )
∣∣2 dθ
/∫

I

|PW |2

� C1

{
1

2π

π∫
−π

exp
(−2
[
V σn(eiθ ) − cn

])
dθ + sup

θ∈[0,η]
exp
(−2
[
V σn(eiθ ) − cn

])}
.

Now the extremal property (1) gives the lemma.�
We note that this lemma holds more generally than for our class of weights:Q does

not need to be even or satisfy any smoothness restrictions. With minor modification
lemma holds for any exponential weightW for which the equilibrium measure is support
on a single interval.

3. Upper bounds for λn

In this section, we use Totik’s method of discretisation of a potential [12] to obta
polynomial that gives an upper bound to match the lower bound in the previous se
The details are similar to those in [7, Chapter 7].

Theorem 3.1. There exist C1 and C2 and for large enough n, a polynomial Pn of degree
� n such that for |z| = 1 with arg(z) ∈ [π/4,3π/4],∣∣Pn(z)

∣∣� C1 exp
(−[V σn(z) − cn

])
(13)

and ∫
I

|PW |2 � C2. (14)

Moreover for such n,

λ−1
n � C3

3π/4∫
π/4

exp
(−2
[
V σn(eiθ ) − cn

])
dθ, (15)

with C3 independent of n.
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Throughout, we letσ ∗
n denote the densityσn contracted to[−1,1] so that

σ ∗
n (s) = an

n
σn(ans), s ∈ (−1,1),

and
1∫

−1

σ ∗
n = 1. (16)

For a fixedn, we determine points

−1 = t0 < t1 < t2 < · · · < tn = 1

and intervals

Ij = [tj , tj+1), 0 � j � n − 1, |Ij | = tj+1 − tj ,

with ∫
Ij

σ ∗
n = 1

n
, 0 � j � n − 1.

Moreover, we use Totik’s idea [12] of the “weight point” or “centre of mass”

ξj =
tj+1∫
tj

sσ ∗
n (s) ds

/ tj+1∫
tj

σ ∗
n (s) ds ∈ (tj , tj+1),

so that
tj+1∫
tj

(s − ξj )σ
∗
n (s) ds = 0. (17)

We define

Rn(z) =
n−1∏
j=0

(z − ξj ),

and will prove

Lemma 3.2. There exists a positive integer L such that for large enough n, and 2/an �
|u| � 1/(2an) with arg(u) ∈ [π/4,3π/4],∣∣Rn(u)

∣∣exp
(
nV σ ∗

n (u)
)
� C1 (18)

and ∣∣Rn(x)
∣∣exp
(
nV σ ∗

n (x)
)
� C2(1− x2)−L, x ∈ (−1,1). (19)

Later on, ifI is unbounded, we shall “damp down”Rn onI by multiplying with another
polynomial so that we obtain (14). For the proof of Lemma 3.2, we need properties
discretisation points:
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with
Lemma 3.3.

(a) Uniformly in n and 1 � j � n − 2,

σ ∗
n (tj ) ∼ σ ∗

n (s) ∼ σ ∗
n (tj+1) ∼ 1

n|Ij | ∼ 1

n|Ij+1| , s ∈ [tj , tj+1]. (20)

(b) Moreover, if j = 0,

σ ∗
n (s) � Cσ ∗

n (tj+1) ∼ 1

n|Ij | ∼ 1

n|Ij+1| , s ∈ [tj , tj+1], (21)

with an analogous assertion if j = n − 1.
(c) There exists C > 0 such that for n � 1, and u,v ∈ (−1,1) with

|u − v| � (1− u2)5, (22)

we have

σ ∗
n (u)/σ ∗

n (v) � C.

Proof. (a), (b) These are Lemma 7.16 in [7, p. 194].
(c) Note that the class of weightsF(C2) we treat here lies in the classF(Lip(1/2))

in [7] (see [7, p. 13]) and hence we may apply Theorem 6.3(b) in [7, pp. 147–148]
ψ(u) = u1/2. We obtain forn � 1 andu,v ∈ (−1,1),

∣∣σ ∗
n (u) − σ ∗

n (v)
∣∣� C√

1− |v|
( |u − v|

1− max{|u|, |v|}
)1/4

.

Moreover, from Theorem 6.1(b) in [7, p. 146],

σ ∗
n (v) � C

√
1− v2.

Then subject to (22), we obtain

1− |u| ∼ 1− |v| ∼ 1− u2,

so ∣∣∣∣1− σ ∗
n (u)

σ ∗
n (v)

∣∣∣∣� C

(1− |u|)5/4 |u − v|1/4 � C. �
Proof of (19) of Lemma 3.2. We see that

log
∣∣Rn(u)

∣∣+ nV σ ∗
n (u) = −

n−1∑
j=0

∫
Ij

log

∣∣∣∣ u − s

u − ξj

∣∣∣∣(nσ ∗
n (s)
)
ds =: −

n−1∑
j=0

Γj . (23)

Now we proceed in five steps.
Step 1. An inequality for Γj . Fix u ∈ [−1,1] and choosej0 such thatu ∈ Ij0. Since

|Ij | ∼ |Ij±1| (by Lemma 3.3), we claim that there existsτ ∈ (0,1), independent ofu, j

andn, such that for|j − j0| � 2,

s ∈ Ij ⇒ ξj − s � −τ. (24)

u − ξj
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on

c),
To see this, suppose, for example, thatj � j0 − 2, so thatIj is to the left ofIj0−1. Then
u − ξj > 0 and

ξj − s

u − ξj

� ξj − tj+1

tj0 − ξj

� tj − tj+1

tj0 − tj
� − |Ij |

|Ij | + |Ij+1| .

(In the third inequality, we use the fact that the ratio decreases as we decreaseξj .) So (24)
holds in this case. The case wherej � j0 + 2 is similar. Next, a Taylor series expansi
gives

log

∣∣∣∣ u − s

u − ξj

∣∣∣∣= log

(
1+ ξj − s

u − ξj

)
= ξj − s

u − ξj
− 1

2

1

(1+ r)2

(
ξj − s

u − ξj

)2

,

wherer is between 0 and(ξj − s)/(u − ξj ). As r � −τ ,

log

∣∣∣∣ u − s

u − ξj

∣∣∣∣� ξj − s

u − ξj

− 1

2(1− τ )2

( |Ij |
dist(u, Ij )

)2

.

Then the definition (17) ofξj gives

Γj � − 1

2(1− r)2

( |Ij |
dist(u, Ij )

)2

.

Step 2. Γj with Ij far from Ij0. Consider thosej with |j − j0| � 2 and

dist(u, Ij ) � (1− u2)5.

Let S denote the set of all such indicesj . Here the first restriction onj ensures that

dist(u, Ij ) � C|Ij |
and then using the bound onΓj from Step 1,∑

j∈S
Γj � −C

∑
j∈S

|Ij |
dist(u, Ij )

� −C

∫
{s∈[0,1]: |s−u|�C1(1−u2)5}

ds

|s − u|

� C log

∣∣∣∣1− u2

2

∣∣∣∣.
Step 3. Γj with Ij close, but not too close, to Ij0. Consider thosej with |j − j0| � 2

and

dist(u, Ij ) < (1− u2)5.

Let T denote the set of all such indicesj . Note that from Lemma 3.3(a), (b), and then (
uniformly for suchj , and somek ∈ {j, j + 1},

|Ij |
|Ij0|

� C
σ ∗

n (u)

σ ∗
n (tk)

� C.

Then∑
j∈T

Γj � −C|Ij0|
∑
j∈T

|Ij |
dist(u, Ij )2 � −C|Ij0|

∫
{s: |s−u|�C |I |}

ds

|s − u|2 � −C.
1 j0
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for
Step 4.Γj with Ij very close to Ij0. Now we deal with the at most 3 remaining termsΓj

with |j − j0| � 1. Here we can apply Lemma 3.3 to obtain, for some constantsC1, C2 and
C3 (independent ofj , j0, u andn),

Γj =
∫
Ij

log

∣∣∣∣ u − s

u − ξj

∣∣∣∣(nσ ∗
n (s)
)
ds �
∫
Ij

log

∣∣∣∣ u − s

C1|Ij |
∣∣∣∣(nσ ∗

n (s)
)
ds

� C2

|Ij |
∫
Ij

log

∣∣∣∣ u − s

C1|Ij |
∣∣∣∣ds � C2

C3∫
−C3

log

∣∣∣∣ v

C1

∣∣∣∣dv � −C4.

Thus ∑
j : |j−j0|�1

Γj � −C5.

Step 5. Finish the proof of (19). Combining (23) and all the estimates above gives
u ∈ (−1,1),

log
∣∣Rn(u)

∣∣+ nV σ ∗
n (u) � C − C log(1− u2). �

Proof of (18) of Lemma 3.2. We use theΓj defined above. Fors ∈ Ij andu ∈ C,

log

∣∣∣∣ u − s

u − ξj

∣∣∣∣= 1

2
log

∣∣∣∣1+ ξj − s

u − ξj

∣∣∣∣2 = 1

2
log

(
1+
∣∣∣∣ ξj − s

u − ξj

∣∣∣∣2 + 2 Re

(
ξj − s

u − ξj

))

� 1

2

∣∣∣∣ ξj − s

u − ξj

∣∣∣∣2 + Re

(
1

u − ξj

)
(ξj − s),

so integrating overIj and using (17) gives

Γj � |Ij |2
2|u − ξj |2

∫
Ij

nσ ∗
n (s) ds + 0 � 1

2

[ |Ij |
dist(u, Ij )

]2
.

Suppose now that for someC > 0,

χ(u) := sup

{
|Ij |: dist(u, Ij ) � 1

8

}
� C| Imu|. (25)

Then ∑
j : dist(u,Ij )�1/8

Γj � χ(u)

2

∑
j : dist(u,Ij )�1/8

|Ij |
dist(u, Ij )2

� C1χ(u)
∑

j : dist(u,Ij )�1/8

|Ij |
(Imu)2 + dist(Reu, Ij )2

� C2χ(u)

∞∫
ds

(Imu)2 + |Reu − s|2 � C3, (26)
−∞
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)

7,

t

by (25). Moreover,∑
j : dist(u,Ij )>1/8

Γj � C4

∑
j : dist(u,Ij )>1/8

|Ij | � C5.

Combining this, (23) and (26) gives∣∣Rn(u)
∣∣exp
(
nV σ ∗

n (u)
)
� C6,

provided (25) holds. Now we show that (25) does hold if

2

an

� |u| � 1

2an

and arg(u) ∈
[
π

4
,

3π

4

]
. (27)

We consider two subcases.
(I) I is a finite interval. In this casean → d < ∞ asn → ∞. Then the condition (27

ensures that| Imu| � C, with C independent ofu andn. Hence (25) is immediate.
(II) I = (−∞,∞). In this casean → ∞, n → ∞, and (27) implies that|u| � 1/8 for

large enoughn. Then forn � n0,

dist(u, Ij ) � 1

8
⇒ Ij ⊂

(
−1

3
,

1

3

)
.

(The thresholdn0 does not depend onu, j, j0, n.) Since (see (7.89) and (7.84) in [
pp. 187–188]),

Ij ⊂
(

−1

3
,

1

3

)
⇒ |Ij | ∼ 1

n

(with constants in the∼ relation independent ofn), and since| Imu| ∼ 1/an, we see tha
(25) reduces to

1

n
� C

an

,

which is true as

an = o(n).

(See (3.30) in [7, p.72] and note that in the even caseδn = an.) �
From this we deduce

Lemma 3.4. Let L be as in Lemma 3.2. There exist polynomials R∗
n of degree � n + 2L

such that for 1/2� |z| � 2 with arg(z) ∈ [π/4,3π/4],∣∣R∗
n(z)
∣∣exp
(
V σn(z) − cn

)
� C1 (28)

and ∣∣R∗
nW
∣∣� C2 in I. (29)
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)

a is

e

Proof. Observe that

V σn(anu) =
an∫

−an

log
1

|anu − t|σn(t) dt = n

1∫
−1

log
1

|anu − ans|σ
∗
n (s) ds

= n log
1

an

+ nV σ ∗
n (u).

We set

R∗
n(z) := (1− (a−1

n z
)2)L

Rn

(
a−1
n z
)
exp

(
cn − n log

1

an

)
,

whereL is as in Lemma 3.2. We see that∣∣R∗
n(anu)

∣∣exp
(
V σn(anu) − cn

)= |1− u2|L∣∣Rn(u)
∣∣exp
(
V σ ∗

n (u)
)

and (28) follows from (18), on settingz = anu. (Note that|1 − u2| is bounded below.
Next, forx ∈ [−1,1], from (6),∣∣R∗

nW
∣∣(anx) = ∣∣R∗

n(anx)
∣∣exp
(
V σn(anx) − cn

)
= (1− x2)L

∣∣Rn(x)
∣∣exp
(
nV σ ∗

n (x)
)
� C,

by (19). Then restricted range inequalities [7, p. 96] give∥∥R∗
nW
∥∥

L∞(I )
� C
∥∥R∗

nW
∥∥

L∞[−an,an] � C. �
Although the sup-norm ofR∗

nW is bounded, all we can deduce from this last lemm
that theL2 norm overI is O(an). This is a problem ifan → ∞, n → ∞. To fix this, we
multiply R∗

n by a polynomial of degreeO(an) that behaves like(1 + x2)−1 on [−an, an].
But that would give a polynomial of degreen + O(an), rather thann. To avoid this, we
show that the polynomialsR∗

m with m = n − O(an) still satisfy the conclusions of th
previous lemma, and for this we need

Lemma 3.5. Let K > 0. Assume that

lim
n→∞ an = ∞.

Assume that for n � 1, we are given an integer m = m(n) � n with

n − m = O(an), n → ∞.

Then for |u| � K,(
V σn(u) − cn

)− (V σm(u) − cm

)
� −C.

Proof. We use [7, Eq. (2.34), p. 46]

cn =
n∫

log
2

as

ds
0
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-
. Now
and [7, Eq. (2.35), p. 46]

σn(t) =
n∫

0

γ∆s (t) ds,

whereγ∆s is the equilibrium density for the interval∆s = [−as, as], so that

γ∆s (t) =
{

1
π
√

a2
s −t2

, t ∈ (−as, as),

0, otherwise.

The Green’s function forC \ ∆s with pole at∞ has the representations

g∆s (u) =
∫

log|u − t|γ∆s (t) dt + log
2

as

= log

∣∣∣∣ uas

+
√(

u

as

)2

− 1

∣∣∣∣.
Then we see that

−V σn(u) + cn =
∫

log|u − t|
( n∫

0

γ∆s (t) ds

)
dt +

n∫
0

log
2

as

ds

=
n∫

0

g∆s (u) ds. (30)

So,

(
V σn(u) − cn

)− (V σm(u) − cm

)= −
n∫

m

g∆s (u) ds.

Here fors ∈ [m,n],

g∆s (u) = log

∣∣∣∣ uas

+
√(

u

as

)2

− 1

∣∣∣∣� log

(∣∣∣∣ uas

∣∣∣∣+
√∣∣∣∣ uas

∣∣∣∣2 + 1

)

� log

(
1+ 2

∣∣∣∣ uas

∣∣∣∣
)

� 2
K

am

.

Thus

−
n∫

m

g∆s (u) ds � −C
n − m

am

� −C
an

am

� −C1.

The last relation follows asm ∼ n ⇒ am ∼ an (see (3.27) in [7, p. 72]). �
We turn to the

Proof of Theorem 3.1. If (an) is bounded, then we can just choosePn = R∗
n and the asser

tions (13) and (14) of Theorem 3.1 follow from the corresponding ones in Lemma 3.4
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st

r, (28)

rtions
we consider the case where(an) is unbounded. Forn � 1, let� = �(n) denote the greate
integer� an − 2L. By Corollary 2 in [8], there exist for large enoughn, polynomialsS� of
degree� � with

S�(x) ∼ 1

1+ x2
, x ∈ [−2an,2an],

and ∣∣S�(z)
∣∣� C, |z| = 1

2
.

Then we set

Pn(z) = R∗
n−�(z)S�

(
z

2

)
,

a polynomial of degree� n. Then in[−an, an], (29) gives∣∣Pn(x)
∣∣W(x) � C

1+ (x/2)2 ,

so
an∫

−an

|PnW |2 � C.

Restricted range inequalities (see Theorem 4.2 in [7, p. 96]) then give (14). Moreove
and Lemma 3.5 withm = n − � give for |z| = 1 with arg(z) ∈ [π/4,3π/4],∣∣Pn(z)

∣∣� C
∣∣R∗

n−�

∣∣(z) � C exp
(−[V σn−�(z) − cn−�

])
� C1 exp

(−[V σn(z) − cn

])
.

So we have (13). Finally, the extremal property (1) ofλn gives (15). �

4. Proof of Theorem 1.2

If we combine Lemma 2.1 and Theorem 3.1, we see that the following three asse
together give Theorem 1.2.

(I)
1

2π

3π/4∫
π/4

exp
(−2
[
V σn(eiθ ) − cn

])
dθ ∼
√

an

n
exp
(−2
[
V σn(i) − cn

])
. (31)

(II) Given 0< η < π/2, there existsC > 0 such that

exp
(−2
[
V σn(eiθ ) − cn

])/
exp
(−2
[
V σn(i) − cn

])
� exp

(
−C

n

an

)
, (32)

uniformly for n � 1 andθ ∈ [−η,η] ∪ [π − η,π + η].

(III) V σn(i) − cn = −
n∫

log

(
1

as

+
√

1+ 1

a2
s

)
ds. (33)
0
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ounds

st
(Recall thatn/an → ∞ asn → ∞.)

Proof of (I), (II). Observe that asσn is even,

V σn(eiθ ) − V σn(i) =
an∫

0

log

∣∣∣∣ t2 + 1

t2 − e2iθ

∣∣∣∣σn(t) dt

= 1

2

an∫
0

log

(
1+ 4t2 cos2 θ

|t2 − e2iθ |2
)

σn(t) dt.

Here for allθ andt ,

4t2 cos2 θ

|t2 − e2iθ |2 � 4t2 cos2 θ

(t2 + 1)2
(� 1)

while for θ ∈ [π/4,3π/4], we have∼ uniformly in θ, t , instead of just�. Then we obtain
for all θ ∈ [−π,π],

V σn(eiθ ) − V σn(i) � C(cos2 θ)

an∫
0

t2

(t2 + 1)2σn(t) dt (34)

and forθ ∈ [π/4,3π/4],

V σn(eiθ ) − V σn(i) ∼ (cos2 θ)

an∫
0

t2

(t2 + 1)2
σn(t) dt. (35)

In all cases, the constants are independent ofn, θ . Now we need the estimates

σn(t) � Cn√
a2
n − t2

, t ∈ (−an, an),

and

σn(t) ∼ n√
a2
n − t2

∼ n

an

, t ∈
(

−1

2
an,

1

2
an

)
.

These estimates follow from Theorem 1.11 in [7, pp. 17–18]. Let us substitute these b
in (34) and (35). Some straightforward estimation gives for allθ ∈ [−π,π],

V σn(eiθ ) − V σn(i) � C
n

an

(cos2 θ), (36)

and forθ ∈ [π/4,3π/4],
V σn(eiθ ) − V σn(i) ∼ n

an

(cos2 θ). (37)

(For θ = π/2, we interpret 0/0 as 1.) Now (36) directly gives (32). Moreover, this la
relation gives for someC1,C2,C3,
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f

trices,

ath.

.

San

-

5)
1

2π

3π/4∫
π/4

exp
(−2
[
V σn(eiθ ) − cn

])
dθ
/

exp
(−2
[
V σn(i) − cn

])

� 1

2π

3π/4∫
π/4

exp

(
−C1

n

an

cos2 θ

)
dθ

� 1

2π

3π/4∫
π/4

exp

(
−C2

n

an

(
θ − π

2

)2)
dθ � C3

√
an

n
.

Similarly (37) gives a matching upper bound, and so we have (I) also.�
Proof of (III). From (30),

cn − V σn(i) =
n∫

0

g∆s (i) ds.

Sinceg∆s admits the representation

g∆s (z) = log

∣∣∣∣ zas

+
√(

z

as

)2

− 1

∣∣∣∣,
we obtain (33). �
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