7,861 research outputs found
Pressurizing Field-Effect Transistors of Few-Layer MoS2 in a Diamond Anvil Cell
Hydrostatic pressure applied using diamond anvil cells (DAC) has been widely
explored to modulate physical properties of materials by tuning their lattice
degree of freedom. Independently, electrical field is able to tune the
electronic degree of freedom of functional materials via, for example, the
field-effect transistor (FET) configuration. Combining these two orthogonal
approaches would allow discovery of new physical properties and phases going
beyond the known phase space. Such experiments are, however, technically
challenging and have not been demonstrated. Herein, we report a feasible
strategy to prepare and measure FETs in a DAC by lithographically patterning
the nanodevices onto the diamond culet. Multiple-terminal FETs were fabricated
in the DAC using few-layer MoS2 and BN as the channel semiconductor and
dielectric layer, respectively. It is found that the mobility, conductance,
carrier concentration, and contact conductance of MoS2 can all be significantly
enhanced with pressure. We expect that the approach could enable unprecedented
ways to explore new phases and properties of materials under coupled
mechano-electrostatic modulation.Comment: 15 pages, 5 figure
Dynamical symmetries of two-dimensional systems in relativistic quantum mechanics
The two-dimensional Dirac Hamiltonian with equal scalar and vector potentials
has been proved commuting with the deformed orbital angular momentum . When
the potential takes the Coulomb form, the system has an SO(3) symmetry, and
similarly the harmonic oscillator potential possesses an SU(2) symmetry. The
generators of the symmetric groups are derived for these two systems
separately. The corresponding energy spectra are yielded naturally from the
Casimir operators. Their non-relativistic limits are also discussed.Comment: 3 pages, Accepted by Annals of Physics (New York
Oxysterol-Binding Protein-1 (OSBP1) Modulates Processing and Trafficking of the Amyloid Precursor Protein
BACKGROUND
Evidence from biochemical, epidemiological and genetic findings indicates that cholesterol levels are linked to amyloid-β (Aβ) production and Alzheimer's disease (AD). Oxysterols, which are cholesterol-derived ligands of the liver X receptors (LXRs) and oxysterol binding proteins, strongly regulate the processing of amyloid precursor protein (APP). Although LXRs have been studied extensively, little is known about the biology of oxysterol binding proteins. Oxysterol-binding protein 1 (OSBP1) is a member of a family of sterol-binding proteins with roles in lipid metabolism, regulation of secretory vesicle generation and signal transduction, and it is thought that these proteins may act as sterol sensors to control a variety of sterol-dependent cellular processes.
RESULTS
We investigated whether OSBP1 was involved in regulating APP processing and found that overexpression of OSBP1 downregulated the amyloidogenic processing of APP, while OSBP1 knockdown had the opposite effect. In addition, we found that OSBP1 altered the trafficking of APP-Notch2 dimers by causing their accumulation in the Golgi, an effect that could be reversed by treating cells with OSBP1 ligand, 25-hydroxycholesterol.
CONCLUSION
These results suggest that OSBP1 could play a role in linking cholesterol metabolism with intracellular APP trafficking and Aβ production, and more importantly indicate that OSBP1 could provide an alternative target for Aβ-directed therapeutic.National Institute on Aging (AG/NS17485
- …
