42 research outputs found

    Omicron variant susceptibility to neutralizing antibodies induced in children by natural SARS-CoV-2 infection or COVID-19 vaccine

    Get PDF
    The novel SARS-CoV-2 Omicron variant may increase the risk of re-infection and vaccine breakthrough infections as it possesses key mutations in the spike protein that affect neutralizing antibody response. Most studies on neutralization susceptibility were conducted using specimens from adult COVID-19 patients or vaccine recipients. However, since the paediatric population has an antibody response to SARS-CoV-2 infection that is distinct from the adult population, it is critical to assess the neutralization susceptibility of pediatric serum specimens. This study compared the neutralization susceptibility of serum specimens collected from 49 individuals of <18 years old, including 34 adolescent BNT162b2 (Pfizer-BioNTech) vaccine recipients, and 15 recovered COVID-19 patients aged between 2 and 17. We demonstrated that only 38.2% of BNT162b2 vaccine recipients and 26.7% of recovered COVID-19 patients had their serum neutralization titre at or above the detection threshold in our live virus microneutralization assay. Furthermore, the neutralizing antibody titer against the Omicron variant was substantially lower than those against the ancestral virus or the Beta variant. Our results suggest that vaccine recipients and COVID-19 patients in the pediatric age group will likely be more susceptible to vaccine breakthrough infections or reinfections due to the Omicron variant than previous variants

    Targeting DNA-PKcs and ATM with miR-101 Sensitizes Tumors to Radiation

    Get PDF
    Radiotherapy kills tumor-cells by inducing DNA double strand breaks (DSBs). However, the efficient repair of tumors frequently prevents successful treatment. Therefore, identifying new practical sensitizers is an essential step towards successful radiotherapy. In this study, we tested the new hypothesis: identifying the miRNAs to target DNA DSB repair genes could be a new way for sensitizing tumors to ionizing radiation.HERE, WE CHOSE TWO GENES: DNA-PKcs (an essential factor for non-homologous end-joining repair) and ATM (an important checkpoint regulator for promoting homologous recombination repair) as the targets to search their regulating miRNAs. By combining the database search and the bench work, we picked out miR-101. We identified that miR-101 could efficiently target DNA-PKcs and ATM via binding to the 3'- UTR of DNA-PKcs or ATM mRNA. Up-regulating miR-101 efficiently reduced the protein levels of DNA-PKcs and ATM in these tumor cells and most importantly, sensitized the tumor cells to radiation in vitro and in vivo.These data demonstrate for the first time that miRNAs could be used to target DNA repair genes and thus sensitize tumors to radiation. These results provide a new way for improving tumor radiotherapy

    ATM Limits Incorrect End Utilization during Non-Homologous End Joining of Multiple Chromosome Breaks

    Get PDF
    Chromosome rearrangements can form when incorrect ends are matched during end joining (EJ) repair of multiple chromosomal double-strand breaks (DSBs). We tested whether the ATM kinase limits chromosome rearrangements via suppressing incorrect end utilization during EJ repair of multiple DSBs. For this, we developed a system for monitoring EJ of two tandem DSBs that can be repaired using correct ends (Proximal-EJ) or incorrect ends (Distal-EJ, which causes loss of the DNA between the DSBs). In this system, two DSBs are induced in a chromosomal reporter by the meganuclease I-SceI. These DSBs are processed into non-cohesive ends by the exonuclease Trex2, which leads to the formation of I-SceI–resistant EJ products during both Proximal-EJ and Distal-EJ. Using this method, we find that genetic or chemical disruption of ATM causes a substantial increase in Distal-EJ, but not Proximal-EJ. We also find that the increase in Distal-EJ caused by ATM disruption is dependent on classical non-homologous end joining (c-NHEJ) factors, specifically DNA-PKcs, Xrcc4, and XLF. We present evidence that Nbs1-deficiency also causes elevated Distal-EJ, but not Proximal-EJ, to a similar degree as ATM-deficiency. In addition, to evaluate the roles of these factors on end processing, we examined Distal-EJ repair junctions. We found that ATM and Xrcc4 limit the length of deletions, whereas Nbs1 and DNA-PKcs promote short deletions. Thus, the regulation of end processing appears distinct from that of end utilization. In summary, we suggest that ATM is important to limit incorrect end utilization during c-NHEJ

    Creating localized DNA double-strand breaks with microirradiation.

    Get PDF
    We describe a protocol for creating localized DNA double-strand breaks (DSBs) with minimal requirements that can be applied in cell biology and molecular biology. This protocol is based on the combination of 5-bromo-2\u27-deoxyuridine (BrdU) labeling and ultraviolet C (UVC) irradiation through porous membranes. Cells are labeled with 10 μM BrdU for 48-72 h, washed with Ca(2+)- and Mg(2+)-free PBS(-), covered by polycarbonate membranes with micropores and exposed to UVC light. With this protocol, localized DSBs are created within subnuclear areas, irrespective of the cell cycle phase. Recruitment of proteins involved in DNA repair, DNA damage response, chromatin remodeling and histone modifications can be visualized without any specialized equipment. The quality is the same as that obtained by laser microirradiation or by any other focal irradiation. DSBs become visible within 30 min of UVC irradiation.without figure

    Genome-wide meta-analysis reveals shared new loci in systemic seropositive rheumatic diseases

    Get PDF
    OBJECTIVE: Immune-mediated inflammatory diseases (IMIDs) are heterogeneous and complex conditions with overlapping clinical symptoms and elevated familial aggregation, which suggests the existence of a shared genetic component. In order to identify this genetic background in a systematic fashion, we performed the first cross-disease genome-wide meta-analysis in systemic seropositive rheumatic diseases, namely, systemic sclerosis, systemic lupus erythematosus, rheumatoid arthritis and idiopathic inflammatory myopathies. METHODS: We meta-analysed ~6.5 million single nucleotide polymorphisms in 11 678 cases and 19 704 non-affected controls of European descent populations. The functional roles of the associated variants were interrogated using publicly available databases. RESULTS: Our analysis revealed five shared genome-wide significant independent loci that had not been previously associated with these diseases: NAB1, KPNA4-ARL14, DGQK, LIMK1 and PRR12. All of these loci are related with immune processes such as interferon and epidermal growth factor signalling, response to methotrexate, cytoskeleton dynamics and coagulation cascade. Remarkably, several of the associated loci are known key players in autoimmunity, which supports the validity of our results. All the associated variants showed significant functional enrichment in DNase hypersensitivity sites, chromatin states and histone marks in relevant immune cells, including shared expression quantitative trait loci. Additionally, our results were significantly enriched in drugs that are being tested for the treatment of the diseases under study. CONCLUSIONS: We have identified shared new risk loci with functional value across diseases and pinpoint new potential candidate loci that could be further investigated. Our results highlight the potential of drug repositioning among related systemic seropositive rheumatic IMIDs

    Essential role for DNA-PK-mediated phosphorylation of NR4A nuclear orphan receptors in DNA double-strand break repair

    No full text
    DNA-dependent protein kinase (DNA-PK) is a central regulator of DNA double-strand break (DSB) repair; however, the identity of relevant DNA-PK substrates has remained elusive. NR4A nuclear orphan receptors function as sequence-specific DNA-binding transcription factors that participate in adaptive and stress-related cell responses. We show here that NR4A proteins interact with the DNA-PK catalytic subunit and, upon exposure to DNA damage, translocate to DSB foci by a mechanism requiring the activity of poly(ADP-ribose) polymerase-1 (PARP-1). At DNA repair foci, NR4A is phosphorylated by DNA-PK and promotes DSB repair. Notably, NR4A transcriptional activity is entirely dispensable in this function, and core components of the DNA repair machinery are not transcriptionally regulated by NR4A. Instead, NR4A functions directly at DNA repair sites by a process that requires phosphorylation by DNA-PK. Furthermore, a severe combined immunodeficiency (SCID)-causing mutation in the human gene encoding the DNA-PK catalytic subunit impairs the interaction and phosphorylation of NR4A at DSBs. Thus, NR4As represent an entirely novel component of DNA damage response and are substrates of DNA-PK in the process of DSB repair
    corecore