4,416 research outputs found

    Effects of Palatable Food Versus Thin Figure Conflicts on Responses of Young Dieting Women

    Get PDF
    Many young women use dieting to achieve a thinner figure yet most tend to fail as a result of heightened responsiveness to palatable food environments and increases in hedonic cravings. In this preliminary study, we developed a novel palatable food vs. thin figure conflict task to assess conflicting motives associated with eating among young women. Forty young dieting women [mean body mass index (BMI) = 22.98 kg/m2, SD = 3.81] completed a food vs. figure conflict task within a 2 (distractor image: food vs. figure) × 2 (word-image congruence: congruent vs. incongruent) within-subjects design. Results supported the view that this new task could effectively capture conflict costs. Dieting young women displayed stronger food conflicts than figure conflicts based on having longer response delays and higher error rates in the food conflict condition than the figure conflict condition. Although young women often proclaimed “dieting” to achieve or maintain a good figure, dieters appeared to exhibit stronger preferences for palatable food cues relative to thin figure cues. These results provide important information for understanding automatic processing biases toward palatable foods and underscore the need for research extensions in other cultural contexts to determine whether such biases are universal in nature

    Laser-driven lepton polarization in the quantum radiation-dominated reflection regime

    Full text link
    Generation of ultrarelativistic polarized leptons during interaction of an ultrarelativistic electron beam with a counterpropagating ultraintense laser pulse is investigated in the quantum radiation-dominated domain. While the symmetry of the laser field tends to average the radiative polarization of leptons to zero, we demonstrate the feasibility of sizable radiative polarization through breaking the symmetry of the process in the reflection regime. After the reflection, the off-axis particles escape the tightly focused beam with polarization correlated to the emission angle, while the particles at the beam center are more likely to be captured in the laser field with unmatched polarization and kinetic motion. Meanwhile, polarization along the electric field emerges due to the spin rotation in the transverse plane via precession. In this way, the combined effects of radiative polarization, spin precession and the laser field focusing are shaping the angle-dependent polarization for outgoing leptons. Our spin-resolved Monte Carlo simulations demonstrate an angle-dependent polarization degree up to 20%\sim20\% for both electrons and positrons, with a yield of one pair per seed electron. It provides a new approach for producing polarized high density electron and positron jets at ultraintense laser facilities

    Effect of minimally invasive percutaneous plates versus interlocking intramedullary nailing in tibial shaft treatment for fractures in adults: A meta-analysis

    Get PDF
    OBJECTIVE: The aim of this article was to determine the effects of minimally invasive percutaneous plates versus interlocking intramedullary nailing in the treatment of tibial shaft fractures in adults. METHOD: Literature searches of the Cochrane Library, PubMed, EMBASE, the Chinese Biomedical Literature database, the CNKI database, Wanfang Data, and the Weipu Journal database were performed up to August 2013. Only randomized and quasi-randomized controlled clinical trials comparing the use of percutaneous plates and interlocking intramedullary nails for tibial shaft fractures were included. Data collection and extraction, quality assessment, and data analyses were performed according to the Cochrane standards. RESULTS: Eleven trials were included. Compared with interlocking intramedullary nailing, minimally invasive percutaneous plates shortened fracture healing time and resulted in lower rates of postoperative delayed union and pain. There was no significant difference between the two methods with regard to the rates of excellent and good Johner-Wruh scoring, the rate of reoperation, and other complications. CONCLUSIONS: Overall, insufficient evidence exists regarding the effects of minimally invasive percutaneous plates versus interlocking intramedullary nailing in the treatment of tibial shaft fractures in adults. Low-quality evidence suggests that minimally invasive percutaneous plates could shorten fracture healing time, decrease the rate of postoperative delayed union, and decrease pain levels compared with interlocking intramedullary nailing. There is no significant difference between the two groups in terms of functional recovery scores, reoperation, and other complications. Further research that includes high-quality randomized controlled, multicenter trials is required to compare the effects of minimally invasive percutaneous plates versus interlocking intramedullary nailing in the treatment of tibial shaft fractures in adults

    Simultaneous evolutionary expansion and constraint of genomic heterogeneity in multifocal lung cancer.

    Get PDF
    Recent genomic analyses have revealed substantial tumor heterogeneity across various cancers. However, it remains unclear whether and how genomic heterogeneity is constrained during tumor evolution. Here, we sequence a unique cohort of multiple synchronous lung cancers (MSLCs) to determine the relative diversity and uniformity of genetic drivers upon identical germline and environmental background. We find that each multicentric primary tumor harbors distinct oncogenic alterations, including novel mutations that are experimentally demonstrated to be functional and therapeutically targetable. However, functional studies show a strikingly constrained tumorigenic pathway underlying heterogeneous genetic variants. These results suggest that although the mutation-specific routes that cells take during oncogenesis are stochastic, genetic trajectories may be constrained by selection for functional convergence on key signaling pathways. Our findings highlight the robust evolutionary pressures that simultaneously shape the expansion and constraint of genomic diversity, a principle that holds important implications for understanding tumor evolution and optimizing therapeutic strategies.Across cancer types tumor heterogeneity has been observed, but how this relates to tumor evolution is unclear. Here, the authors sequence multiple synchronous lung cancers, highlighting the evolutionary pressures that simultaneously shape the expansion and constraint of genomic heterogeneity

    Machine learning guided discovery of superconducting calcium borocarbides

    Full text link
    Pursuit of superconductivity in light-element systems at ambient pressure is of great experimental and theoretical interest. In this work, we combine a machine learning (ML) method with first-principles calculations to efficiently search for the energetically favorable ternary Ca-B-C compounds. Three new layered borocarbides (stable CaBC5 and metastable Ca2BC11 and CaB3C3) are predicted to be phonon-mediated superconductors at ambient pressure. The hexagonal CaB3C3 possesses the highest Tc of 26.05 K among the three compounds. The {\sigma}-bonging bands around the Fermi level account for the large electron-phonon coupling ({\lambda} = 0.980) of hexagonal CaB3C3. The ML-guided approach opens up a way for greatly accelerating the discovery of new high-Tc superconductors
    corecore