2,790 research outputs found
On the Enforcement of a Class of Nonlinear Constraints on Petri Nets
International audienceThis paper focuses on the enforcement of nonlinear constraints in Petri nets. First, a supervisory structure is proposed for a nonlinear constraint. The proposed structure consists of added places and transitions. It controls the transitions in the net to be controlled only but does not change its states since there is no arc between the added transitions and the places in the original net. Second, an integer linear programming model is proposed to transform a nonlinear constraint to a minimal number of conjunc-tive linear constraints that have the same control performance as the nonlinear one. By using a place invariant based method, the obtained linear constraints can be easily enforced by a set of control places. The control places consist to a supervisor that can enforce the given nonlinear constraint. On condition that the admissible markings space of a nonlinear constraint is non-convex, another integer linear programming model is developed to obtain a minimal number of constraints whose disjunctions are equivalent to the nonlinear constraint. Finally, a number of examples are provided to demonstrate the proposed approach
Double-diffusive Marangoni convection in a rectangular cavity : onset of convection
2009-2010 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
A general electromagnetic field-circuit coupling method based on time-stepping finite element analysis for performance analysis of pulse-width modulated switching converters considering hysteresis effects
Considering the special characteristics existing in the pulse-width modulated (PWM) switching converter, a general method for the time-stepping finite element analysis based electromagnetic field coupling with its feeding circuit used in the analysis of PWM switching converter considering hysteresis effects is introduced in this paper. Comparing with the electromagnetic field-circuit indirect coupling method (ICM), the proposed method has overcome the drawback that the ICM cannot take the hysteresis effects into account. Compared with the electromagnetic field-circuit direct coupling method (DCM), the proposed method has the similar accuracy but higher efficiency. Furthermore, like the ICM, the proposed method also divides the system with higher state dimensions produced by the DCM into two subsystems with lower state dimensions; this may reduce the algorithm convergence problem which often happens in high dimensional systems. © 2008 American Institute of Physics
Band and scattering tuning for high performance thermoelectric Sn1-xMnxTe alloys
published_or_final_versio
Mixed sums of primes and other terms
In this paper we study mixed sums of primes and linear recurrences. We show
that if m=2(mod 4) and m+1 is a prime then
for any n=3,4,... and prime power p^a. We also prove that if a>1 is an integer,
u_0=0, u_1=1 and u_{i+1}=au_i+u_{i-1} for i=1,2,3,..., then all the sums
u_m+au_n (m,n=1,2,3,...) are distinct. One of our conjectures states that any
integer n>4 can be written as the sum of an odd prime, an odd Fibonacci number
and a positive Fibonacci number.Comment: 11 page
The optical microscopy with virtual image breaks a record: 50-nm resolution imaging is demonstrated
We demonstrate a new 'microsphere nanoscope' that uses ordinary SiO2
microspheres as superlenses to create a virtual image of the object in near
field. The magnified virtual image greatly overcomes the diffraction limit. We
are able to resolve clearly 50-nm objects under a standard white light source
in both transmission and reflection modes. The resolution achieved for white
light opens a new opportunity to image viruses, DNA and molecules in real time
IFN-gamma is associated with risk of Schistosoma japonicum infection in China.
Before the start of the schistosomiasis transmission season, 129 villagers resident on a Schistosoma japonicum-endemic island in Poyang Lake, Jiangxi Province, 64 of whom were stool-positive for S. japonicum eggs by the Kato method and 65 negative, were treated with praziquantel. Forty-five days later the 93 subjects who presented for follow-up were all stool-negative. Blood samples were collected from all 93 individuals. S. japonicum soluble worm antigen (SWAP) and soluble egg antigen (SEA) stimulated IL-4, IL-5 and IFN-gamma production in whole-blood cultures were measured by ELISA. All the subjects were interviewed nine times during the subsequent transmission season to estimate the intensity of their contact with potentially infective snail habitats, and the subjects were all re-screened for S. japonicum by the Kato method at the end of the transmission season. Fourteen subjects were found to be infected at that time. There was some indication that the risk of infection might be associated with gender (with females being at higher risk) and with the intensity of water contact, and there was evidence that levels of SEA-induced IFN-gamma production were associated with reduced risk of infection
SHMS-based fatigue reliability analysis of multiloading suspension bridges
Author name used in this manuscript: Z. W. Chen2011-2012 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe
Prediction of the functional class of metal-binding proteins from sequence derived physicochemical properties by support vector machine approach
Metal-binding proteins play important roles in structural stability, signaling, regulation, transport, immune response, metabolism control, and metal homeostasis. Because of their functional and sequence diversity, it is desirable to explore additional methods for predicting metal-binding proteins irrespective of sequence similarity. This work explores support vector machines (SVM) as such a method. SVM prediction systems were developed by using 53,333 metal-binding and 147,347 non-metal-binding proteins, and evaluated by an independent set of 31,448 metal-binding and 79,051 non-metal-binding proteins. The computed prediction accuracy is 86.3%, 81.6%, 83.5%, 94.0%, 81.2%, 85.4%, 77.6%, 90.4%, 90.9%, 74.9% and 78.1% for calcium-binding, cobalt-binding, copper-binding, iron-binding, magnesium-binding, manganese-binding, nickel-binding, potassium-binding, sodium-binding, zinc-binding, and all metal-binding proteins respectively. The accuracy for the non-member proteins of each class is 88.2%, 99.9%, 98.1%, 91.4%, 87.9%, 94.5%, 99.2%, 99.9%, 99.9%, 98.0%, and 88.0% respectively. Comparable accuracies were obtained by using a different SVM kernel function. Our method predicts 67% of the 87 metal-binding proteins non-homologous to any protein in the Swissprot database and 85.3% of the 333 proteins of known metal-binding domains as metal-binding. These suggest the usefulness of SVM for facilitating the prediction of metal-binding proteins. Our software can be accessed at the SVMProt server
- …