159,953 research outputs found

    Study of the Wealth Inequality in the Minority Game

    Get PDF
    To demonstrate the usefulness of physical approaches for the study of realistic economic systems, we investigate the inequality of players' wealth in one of the most extensively studied econophysical models, namely, the minority game (MG). We gauge the wealth inequality of players in the MG by a well-known measure in economics known as the modified Gini index. From our numerical results, we conclude that the wealth inequality in the MG is very severe near the point of maximum cooperation among players, where the diversity of the strategy space is approximately equal to the number of strategies at play. In other words, the optimal cooperation between players comes hand in hand with severe wealth inequality. We also show that our numerical results in the asymmetric phase of the MG can be reproduced semi-analytically using a replica method.Comment: 9 pages in revtex 4 style with 3 figures; minor revision with a change of title; to appear in PR

    Steady-state phase error for a phase-locked loop subjected to periodic Doppler inputs

    Get PDF
    The performance of a carrier phase locked loop (PLL) driven by a periodic Doppler input is studied. By expanding the Doppler input into a Fourier series and applying the linearized PLL approximations, it is easy to show that, for periodic frequency disturbances, the resulting steady state phase error is also periodic. Compared to the method of expanding frequency excursion into a power series, the Fourier expansion method can be used to predict the maximum phase error excursion for a periodic Doppler input. For systems with a large Doppler rate fluctuation, such as an optical transponder aboard an Earth orbiting spacecraft, the method can be applied to test whether a lower order tracking loop can provide satisfactory tracking and thereby save the effect of a higher order loop design

    Phase String Effect in the t-J Model: General Theory

    Full text link
    We reexamine the problem of a hole moving in an antiferromagnetic spin background and find that the injected hole will always pick up a sequence of nontrivial phases from the spin degrees of freedom. Previously unnoticed, such a string-like phase originates from the hidden Marshall signs which are scrambled by the hopping of the hole. We can rigorously show that this phase string is non-repairable at low energy and give a general proof that the spectral weight Z must vanish at the ground-state energy due to the phase string effect. Thus, the quasiparticle description fails here and the quantum interference effect of the phase string dramatically affects the long-distance behavior of the injected hole. We introduce a so-called phase-string formulation of the t-J model for a general number of holes in which the phase string effect can be explicitly tracked. As an example, by applying this new mathematical formulation in one dimension, we reproduce the well-known Luttinger-liquid behaviors of the asymptotic single-electron Green's function and the spin-spin correlation function. We can also use the present phase string theory to justify previously developed spin-charge separation theory in two dimensions, which offers a systematic explanation for the transport and magnetic anomalies in the high-T_c cuprates.Comment: Revtex, 36 pages, no figure, to appear in Phys. Rev. B

    Exploring Quantum Phase Transitions with a Novel Sublattice Entanglement Scenario

    Full text link
    We introduce a new measure called reduced entropy of sublattice to quantify entanglement in spin, electron and boson systems. By analyzing this quantity, we reveal an intriguing connection between quantum entanglement and quantum phase transitions in various strongly correlated systems: the local extremes of reduced entropy and its first derivative as functions of the coupling constant coincide respectively with the first and second order transition points. Exact numerical studies merely for small lattices reproduce several well-known results, demonstrating that our scenario is quite promising for exploring quantum phase transitions.Comment: 4 pages, 4 figure

    Bulk Rotational Symmetry Breaking in Kondo Insulator SmB6

    Full text link
    Kondo insulator samarium hexaboride (SmB6) has been intensely studied in recent years as a potential candidate of a strongly correlated topological insulator. One of the most exciting phenomena observed in SmB6 is the clear quantum oscillations appearing in magnetic torque at a low temperature despite the insulating behavior in resistance. These quantum oscillations show multiple frequencies and varied effective masses. The origin of quantum oscillation is, however, still under debate with evidence of both two-dimensional Fermi surfaces and three-dimensional Fermi surfaces. Here, we carry out angle-resolved torque magnetometry measurements in a magnetic field up to 45 T and a temperature range down to 40 mK. With the magnetic field rotated in the (010) plane, the quantum oscillation frequency of the strongest oscillation branch shows a four-fold rotational symmetry. However, in the angular dependence of the amplitude of the same branch, this four-fold symmetry is broken and, instead, a twofold symmetry shows up, which is consistent with the prediction of a two-dimensional Lifshitz-Kosevich model. No deviation of Lifshitz-Kosevich behavior is observed down to 40 mK. Our results suggest the existence of multiple light-mass surface states in SmB6, with their mobility significantly depending on the surface disorder level.Comment: 15 pages, 9 figure
    corecore