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Wealth inequality in the minority game
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To demonstrate the usefulness of physical approaches for the study of realistic economic systems, we
investigate the inequality of players’ wealth in one of the most extensively studied econophysical models,
namely, the minority game(MG). We gauge the wealth inequality of players in the MG by a well-known
measure in economics known as the modified Gini index. From our numerical results, we conclude that the
wealth inequality in the MG is very severe near the point of maximum cooperation among players, where the
diversity of the strategy space is approximately equal to the number of strategies at play. In other words, the
optimal cooperation between players comes hand in hand with severe wealth inequality. We also show that our
numerical results in the asymmetric phase of the MG can be reproduced semianalytically using a replica
method.
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I. INTRODUCTION

Econophysics is the study of economic systems by em-
ploying methods and tools developed in physics. Up to now,
many economists have been worrying that econophysicists
are just reinventing the wheel, while many physicists are
studying properties of toy economic models that are not di-
rectly relevant to economics[1]. In this paper, we investigate
the inequality of wealth in a simple-minded econophysical
model known as the minority game(MG) using the so-called
replica trick [2–4]. By doing so, we hope to make a small
step forward in the application of physical methods when
studying real economic systems.

The MG is a simple-minded model of a complex adaptive
system which captures the cooperative behavior of selfish
players in a real market. In this game,N players have to
choose one of the two possible alternatives in each turn
based only on the minority sides in the previousM turns. The
wealth of those who end up in the minority side will be
increased by one while the wealth of the others will be re-
duced by one. To aid the players in making their choice, each
of them is randomly and independently assignedS determin-
istic strategies once and for all when the game begins. Each
deterministic strategy is nothing but a map from the set of all
possible histories(a string of the minority side of the previ-
ous M turns) to the set of the two possible alternatives. All
players make their choices according to their current best
strategies[5,6]. In the MG, the complexity of the system is
usually indicated by the control parametera;2M+1/NS
which is the ratio of the size of the strategy space to the size
of strategies at play[6–8].

Clearly, the mean attendance of either choice isN/2 as
the game is symmetrical for both choices. In contrast, the
variance of this probability, which is conventionally denoted
by s2sAd, is highly nontrivial. It attains a very small value
when a<1, indicating that the players are cooperating[7].
That is why previous studies of the MG and its variants
[9–11] focus mainly on the study ofs2sAd.

Since the strategies are assigned once and for all to each
player, it is possible that some poorly-performing players are

somehow forced to cooperate with some well-performing
peers. Therefore, it makes sense to study the inequality of
wealth in MG in detail.

In Sec. II, we introduce a common method that measures
wealth inequality in economics known as the modified Gini
index. We then study the Gini index in the MG numerically
in Sec. III. Our numerical simulation shows that both the
maximal cooperation point and the point of maximum wealth
inequality occur around 2M+1<NS. This confirms our suspi-
cion that the apparent cooperation of players shown in the
s2sAd does not tell us the complete story. In fact, we are able
to explain the trend of a modified Gini index qualitatively
using the crowd-anticrowd theory[12–14]. In particular, we
find that the cooperation comes along with wealth inequality
partially because poorly-performing players cannot change
their strategies in the MG. In this way, we show that the
crowd-anticrowd theory is not only able to explains2sAd,
but also explains other features of other quantities in the MG.
In Sec. IV, we try to reproduce our numerically simulated
Gini index in the so-called asymmetric phase using the rep-
lica method. we recall that one has to average over the dis-
order variables in the conventional replica method; the direct
application of the replica trick cannot provide the wealth
distribution of players and thus the Gini index of the MG.
Fortunately, a careful semianalytic application of the replica
method can be used to reproduce the Gini index qualitatively
as a function ofa. Finally, we wrap up by giving a brief
summary of our work in Sec. V.

II. GINI INDEX WITH NEGATIVE WEALTH

In order to measure the inequality of wealth among play-
ers in the MG qualitatively, we follow our economics col-
leagues employing the so-called Gini index. In the original
definition, the Gini indexG0 in a population is the mean of
the absolute differences between the wealth all possible pairs
of players[15]. That is to say,
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G0 = 1 −
1

N
o
j=1

N

f1 + 2sN − jdggj . s1d

In the above equation,N is the number of players in the
population,gj is the wealth earned by a player divided by the
total wealth in the population. and thegj’s are ranked in
ascending order, i.e.,g1øg2ø ¯ øgN. Clearly, G0 ranges
from 0 to 1. The largerG0, the more serious the wealth
inequality. If G0=0, the players’ wealth is uniformly distrib-
uted. If G0.1, one of the players possesses the total wealth
of the population and the wealth inequality is served. How-
ever, Eq.(1) is only applicable in two cases:(1) all players
have positive wealth; or(2) all players have negative wealth.
Since players in the MG may have positive or negative
wealth, we cannot useG0, in general, to measure wealth
inequality. We employ an extension ofG0, introduced by
Chenet al., known as the modified Gini indexG [16–18], is
given by

G =

2

N
o
j=1

N

jgj −
N + 1

N

1 +
2

N
o
j=1

k

jgj +
1

N
o
j=1

k

gj3o j=1

k
gj

gk+1

− s1 + 2kd4
, s2d

where k is defined in such a way thato j=1
k gj ,0 and

o j=1
k+1gj .0. For simplicity, we refer to the modified Gini in-

dex G as the Gini index from now on. Just like the original
Gini index G0, the modified Gini indexG measures the nor-
malized wealth inequality of players. Again,G ranges from 0
to 1. The larger the value ofG, the more serious the wealth
inequality. When all players are equally wealthy, i.e.,k=0,
the termo j=1

k jgj vanishes andG becomes zero. In contrast, if
the total wealth of the system is owned by a single player,
i.e., gN=1 and the termo j=1

N−1jgj =0, thenG attains a value of
one asN→`. Also, G is reduced to the original Gini index
G0 when all players have positive wealth or all players have
negative wealth. Moreover,G is unchanged if the wealth of
each player is multiplied by a nonzero constant.

III. NUMERICAL RESULTS AND QUALITATIVE
EXPLANATIONS

In this section, we investigate the wealth inequality of the
players in the MG. Since we are only interested in studying
the generic properties of the Gini index, we average the Gini
index overNr =500 independent runs. BecauseG measures
the normalized wealth distribution of players rather than sim-
ply the first and second moments of this distribution, the time
of convergence of Gini indexG is much longer than that of
the variance of attendance and it differs for different initial
configurations of the system. So we employ an adaptive
scheme to check for system equilibration before taking any
measurement. Specifically, in each run, we record the time
series ofG until the absolute difference ofG between 10000
successive steps is less than 10−6. Then, we obtain the equili-
brated value ofG by using finite size scaling. Finally, we

take G to be the average over 50 measurements each sepa-
rated by 1000 steps.G is a measure of the normalized wealth
distribution. From our numerical simulation,G equilibrates
logarithmically and slowly although the wealth of players is
decreasing in each turn. We will explain the reason for con-
vergence ofG in detail at the end of this section. We have
performed numerical simulations for the cases where players
draw their strategies from full strategy space and reduced
strategy space[5,8] respectively. The Gini indices obtained
in these two cases are very similar. Since the analytical in-
vestigation performed in Sec. IV is simpler if we focus on
reduced strategy space, we present the numerical results
based on reduced strategy space here for consistency.

Let us study the Gini index averaged over the initial con-
ditions kGlJ versus the control parametera as shown in Fig.
1. (Note that we usek·lJ to denote the average over the
initial configuration of the system.) Our numerical results
show that the curves ofkGlJ for differentM coincide. which
means that the Gini indexkGlJ, just like the variance of
attendance, depends only on the control parametera in the
MG.

We now move on to discuss the properties of the Gini
index kGlJ as a function ofa in detail. Figure 1 shows that
the Gini indexkGlJ is small whena→0. In other words, the
wealth of all players is roughly the same in such a case. In
fact, the small value ofkGlJ can be explained by the crowd-
anticrowd theory[12–14] as follows. In the smalla regime,
players are likely to have at least one high ranking strategy at

FIG. 1. The Gini indexkGlJ and the variance of attendance per
players2/N averaged over the initial configuration versusa in the
MG with S=2 for different values ofM. The error bar ofkGlJ is of
order of at most 10−3. The small bump arounda=10 for M =7 is
due to finite size effect.
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each instance, as each player possesses a relatively large por-
tion of strategies of the reduced strategy space. Thus, most of
the players are using the crowd of high ranking strategies,
i.e., those high ranking strategies are overcrowded. Due to
the overcrowding of strategies, each strategy alternatively
wins and loses one virtual score repeatedly when the same
history appears, under the period-two dynamics[7,19]. That
is to say, each strategy has approximately the same probabil-
ity to win for any history. Therefore, all players have roughly
the same amount of wealth and this leads to a small Gini
index kGlJ.

As the control parametera increases, the Gini indexkGlJ

rises rapidly and subsequently attains its maximum value
when the number of strategies at play is approximately equal
to the reduced strategy space size. To explain this, we recall
that the aim of each player in the MG is to maximize one’s
own wealth, which is achieved under the maximization of
the global profit[8]. Subsequently, the attendance of each
choice always tends tobN/2c upon equilibration for all values
of a since the two alternatives are symmetric in the MG.
That is to say, the system always “distributes” approximately
the same amount of wealth to the population in each turn
regardless of the value ofa. Moreover, whenevera<ac,
unlike in the cases of symmetric and asymmetric phases of
the MG, it is not uncommon for a player to hold only low
ranking strategies since the number of strategies at play and
the reduced strategy space size are of the same order. Con-
sequently, a significant number of players are forced to use
the crowd of low ranking strategies and keep on losing. On
the other hand, those players picking the crowd of high rank-
ing strategies have a higher winning probability and keep on
using those strategies. Note that the ranking of the strategies
is almost unchanged whena<ac [12–14]. As a result, the
wealth distribution of players would become relatively di-
verse and the Gini indexkGlJ of the population attains its
maximum value whena→ac.

Actually, the increase in the Gini index whena→ac
+ can

be justified by the frozen probability of the MG. We recall
that in the MG a player employs the virtual score system to
determine which strategy to use in the next time step. In the
asymmetric phase, the probability that a strategy assigned to
a player has a virtual score asymptotically higher than all the
other strategies assigned to the same player increases asa
decreases. Some players end up using only one strategy after
the system equilibrates, they are regard as frozen players.
The frozen probability indicates the number of frozen play-
ers. A small frozen probability, i.e., most players in the game
keep changing their best strategies, implies that only a few
player will keep on winning or keep on losing all the time
and the Gini index should be low. On the other hand, a high
frozen probability may indicate that while some frozen play-
ers are using strategies that win most of time, the best per-
forming strategies for the other frozen players are losing
badly. Thus, there is a wide spread in wealth distribution of
players. The Gini index should be high in this case. The
frozen probability follows the same trend of Gini index as
a→ac

+, which further supports the validity of the result of
the Gini index. Moreover, whena<ac, it is likely that those
frozen players which form the majority of crowds and anti-

crowds in the game use anticorrelated strategy pairs, result-
ing in effective crowd-anticrowd cancellation between frozen
players. Also, those frozen players who picked the anticorre-
lated strategy pairs keep winning or keep losing throughout
the game.

After attaining the maximum value, the Gini indexkGlJ

decreases and gradually tends to zero when the control pa-
rametera further increases. According to crowd-anticrowd
theory[12–14], it is because most of the strategies at play are
uncorrelated to each other when the strategy space size be-
comes much larger than the number of strategies at play.
Therefore, it is as if each player is making random choices in
the game whena is large. Hence, the winning probability of
all strategies is roughly the same. As a result, the Gini index
kGlJ of the population is small in this regime.

As we have reasoned above, the winning probability of
each individual player is steady after equilibration of the sys-
tem. Since the wealth distribution depends solely on the win-
ning probabilities of individual players, thegj’s, and hence
the Gini indexG, converge over a sufficiently long time.
Moreover, it is easy to check that thegj’s converge logarith-
mically. Therefore, the equilibration time forG is much
longer than that ofs2sAd.

IV. SEMIANALYTICAL STUDY OF THE GINI INDEX IN
MG USING THE REPLICA TRICK

A. Methodology

In the previous section, we have explained the wealth
inequality of the players in the MG qualitatively. In fact, the
system of the MG can be described as a disorder spin system
[2,3] since the dynamics of the MG indeed minimizes a glo-
bal function related to market predictability. In this section,
we calculate the Gini indexG of the population in MG semi-
analytically by mapping the MG to a spin glass. As we shall
see, this approach works well whenevera.ac.

Let us start to link the MG, a repeated game withN play-
ers, to the spin glass. In this formalism, every player has to
choose one out of two actions ±1 corresponding to the two
alternatives at each time step. We denote the action of theith
player at timet by cistd. After all players have chosen their
actions, those players choosing the minority action win and
gain one unit of wealth while all the others lose one. In the
MG, the only public information available to the players is
the so-called history, which is the string of the minority ac-
tion of the lastM time steps. Namely, the history is a string
fPst−Md , . . . ,Pst−1dg, wherePstd denotes the minority ac-
tion at time t. For convenience, we label the history by an
index m as follows:

mstd = Pst − Md 3 2M−1 + Pst − M − 1d 3 2M−2

+ ¯ + Pst − 1d. s3d

At the beginning of the game, each player picks once and for
all S strategies randomly from the strategy space. In fact, a
strategy specifies an actionas,i

m taken by theith player for all
possible historiesm=1, . . . ,2M. In the MG, agents make use
of the virtual score, i.e., the hypothetical profit for using a
strategy throughout the game, to evaluate the performance of
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a strategy. To guess the next global minority action, each
player uses their own current best strategy which is the strat-
egy with the highest virtual score at that moment. Assuming
each player hasS=2 strategies which are labeled by “1” and
“2,” we define the disorder variableshvi

m ,ji
mj as

wi
m =

a+,i
m + a−,i

m

2
, ji

m =
a+,i

m − a−,i
m

2
. s4d

Here we use the spin variablesistd= ±1 to denote the strategy
used by theith player at timet. Thus the action of this player
is given by

cistd = vi
mstd + sistdji

mstd. s5d

With the above formalism, we can employ a statistical tool
called the replica trick[3,4] to study the stationary state
properties of the MG by solving the ground state of the
HamiltonianH:

HhmW j = V2 + 2o
i=1

N

Vjimi + o
i,j

N

jij jmimj , s6d

wheremi ;ksistdl andVm=oi=1
N vi

m. Note thatŌ denotes the
average over historym andk·l denotes the average over time
t. In other words, our aim is to find the minimum ofHhmW j
defined by

min
mW Pf− 1,1gN

HhmW j = − lim
b→`

1

b
kln ZsbdlJ, s7d

where the partition function

Zsbd = TrmW e−bHhmW j. s8d

Here, TrmW denotes the integral ofmW on f−1,1gN, k·lJ denotes
the average over the disorder variablesas,i

m (i.e., the quenched
disorderJ of the system) andb stands for the inverse tem-
perature. In fact, the ground state solution ofH depends on
the disorder variables. However, in the thermodynamic limit,
the ground state ofH has a unique solution for all quenched
disorder. Thus, in the replica calculation, we seek for ground
state solution of the HamiltonianH on average of the
quenched disorder. In order to evaluatekln ZlJ, we construct
the partition functionZn by studyingn (a non-negative inte-
ger) replicas of the system with identical disorder variables
has,i

m j. Then, we perform a semianalytical continuation to ex-
tend this function for non-integern. In this way, the average
of ln Z over has,i

m j is reduced to

kln ZlJ = lim
n→0

1

n
lnkZnlJ. s9d

We also define the free energy densityFbsQ̂, r̂d by

kZnlJ =E dr̂E dQ̂expf− bnNFbsQ̂, r̂dg, s10d

whereQa,b=s1/Ndoi
Nmi

ami
b is the overlap matrix andra,b are

the associated Lagrange multipliers. Hence, we can find the
stationary state solution ofH in the thermodynamic limitN

→` by finding the minima ofFbsQ̂, r̂d as

lim
N→`

min
mW Pf1,− 1gN

Hhmj
N

< lim
b→`

lim
n→0

min FbsQ̂, r̂d. s11d

In fact, we can find the minima in the replica symmetric
(RS) ansatz by solving the saddle point equations[4,10]:

]Fb

]ra,b
= 0 and

]Fb

]Qa,b
= 0 ∀a,b. s12d

In this ansatz, the matricesr̂, Q̂ corresponding to minFb, are
assumed to be in the following form:

Qa,b =
1

N
o

i

N

mi
ami

b = H q for a Þ b,

Q for a = b,
J s13d

and

ra,b = H2r for a Þ b,

R for a = b,
J s14d

for all a,b=1,2, . . . ,n. Therefore, using theRSansatz, the
minimum value ofFb in the n→0 limit is given by

FsRSd = lim
n→0

min FbsQ̂, r̂d =
a

2b
lnF1 +

b

a
sQ − qdG

+
as1 + qd

2fa + bsQ − qdg
−

1

b
E dFsldlnFE

−1

1

dm

3exp„− bVsmuld…G +
ab

2
sRQ− rqd, s15d

where Fsld is the normal distribution and the potential
Vsmuld=−Îarlm+sab /2dsr −Rdm2.

Using the saddle point equations, we arrive at[4,10]

a

r2 = 2 −Î 2

p

1

r
e−r2/2 − S1 −

1

r2DerfS r

Î2
D , s16d

where r is a disorder variable and depends on the control
parametera. The probability distribution of the “average ac-
tion” of a player,m, is then given by[3]

Psmd =
fsrd

2
fdsm− 1d + dsm+ 1dg +

r

Î2p
e−srmd2/2,

s17d

wherefsrd=1−erfsr /Î2d, ds0d=1 anddsxd=0 wheneverx
Þ0. Note that Eqs.(16) and (17) are only valid fora.ac.
For a,ac, the replica calculation cannot give correct pre-
dictions for the probability distribution of spin variablem
because it is unable to reproduce the period-two dynamics of
the system[4].

Our aim is to calculate the Gini index of the players in the
MG using the replica trick. At first glance, one might argue
that the distribution ofgi can be reproduced analytically us-
ing the replica trick. However, the replica trick can only
generate the average gain of a group of players rather than
the wealth of an individual player. This is why Challet did
not compute the theoretical gain of individual players ana-
lytically by using the replica trick for the MG. In fact, he
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computes the gain semianalytically using the disorder spin
variablemi measured in the simulations instead[10,20]. To
reproduce the wealth distribution of players, we need to
know the actions of each individual playersistd at time t for
each individual particular quenched disorder. However,sistd
cannot be found by the replica trick. So we approximatesistd
by the disorder spin variablemi generated stochastically
from the distributionPsmd which is found by the replica
trick. Then, the Gini indexGsJd can be calculated from the
wealth distribution of the players for that quenched disorder.
As we are only interested in the generic properties of the
Gini index, we calculate the Gini index averaged over
quenched disorderkGlJ. This should be done by calculating
the Gini index of each individual quenched disorderGsJd
first and then taking average over all quenched disorders.

In practice, we perform the stochastic simulation to gen-
erate the wealth distribution of population in the MG for an
individual quenched disorder in the following way. Before
starting the simulation, the quenched disorderJ is formed
by allowing each player to pick two strategies randomly
from the reduced strategy space. Next, each player draws the
spin variablem from the distributionPsmd as shown in Eq.
(17). Those players withm= ±1 are called frozen players
because they keep on using a strategy throughout the game.
Then, in each step of the game, players choose one of their
own strategies according to their own spin variablem to
guess the next global minority side. In practice, the strategy
used by theith player at timet, sistd, is chosen by calling a
uniform random variatez on f−1,1g. Then we setsistd=1 if
mi ùz and sistd=−1 otherwise. Therefore, for the history
nstd, the action of theith player at timet can be written as

xistd = vi
nstd + sistdji

nstd. s18d

Note that the historynstd is generated randomly at each time
step t in our simulation. In addition, the difference in the
numbers of players choosing the two alternatives at timet is
given by

Xstd = o
i=1

N

xistd. s19d

So we obtain the minority side at timet

Qstd = − sgn„Xstd…. s20d

After determining the minority side, the wealth of theith
players,wistd, is updated by

wist + 1d = wistd + 2d„xistd − Qstd… − 1. s21d

We repeat the above algorithmNs times for the system to
equilibrate. After the equilibration, we measure on the Gini
index of the population for the quenched disorderJ using
Eq. (2). Then we calculate the average Gini index for 500
independent runs. We denote the Gini index calculated by

this algorithm with averaging over the quenched disorder by
kGlJ

R. In fact, we find that the average Gini indexkGlJ con-
verges afterNs=500P iterations, whereP=2M is the number
of possible histories.

B. Semianalytical results using stochastic simulation

Figure 2 gives the Gini index obtained from semianalyti-
cal calculation ofkGlJ

R versus the control parametera for
MG with a.ac. We find that the trend of the curves ofkGlJ

R

agrees with the numerical findings. This implies that we have
successfully reproduced the numerical results of the Gini in-
dex in the asymmetric phase of the MG by using the replica
method. However, the curves ofkGlJ

R are systematically
lower than those from numerical simulation. This is because
the coupling between the actions of players and the dynamics
of the system is completely ignored in our stochastic simu-
lation as the actions of the players depend only on the spin
variablem. Consequently, the global cooperation among the
players is suppressed in our semianalytical calculation.
Hence, the wealth distribution of players is less diverse
which results in underestimation of the Gini index in the
MG.

To make our semianalytical calculation more “realistic,”
we allow the historynstd to be updated sequentially by

nstd = f2nst − 1d + Qstdg mod P, s22d

and we denote the Gini index averaged over the quenched
disorder calculated in this approach bykGlJ

S. Note thatkGlJ
R

andkGlJ
S are calculated using the same algorithm except that

the history is updated in a different way. Figure 3 shows the
Gini index kGlJ

S versus the control parametera in the MG.
We observe that the values ofkGlJ

S agree well with the nu-
merical results whena is large. According to crowd-
anticrowd theory, ifa is large, most strategies of the players
are uncorrelated to each other due to the undersampling of

FIG. 2. The average Gini index found in stochastic simulation
using random historykGlJ

R versus the control parametera in the
asymmetric phase of the MG withNs=500P andS=2 for different
M. For comparison purpose, the solid line indicates the correspond-
ing numerical results in the MG withM =9.
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the strategy space. Moreover, most of the strategies are used
by either one or none of the players in the MG whenever
a→`. Therefore, the cooperation between the players can
be neglected fora→`. In addition, the probability of the
occurrence of different histories is not the same in the MG
whena→` [21]. Indeed, these two conditions are satisfied
in our stochastic simulation using the sequential history. So,
the values ofkGlJ

S match the numerical estimates whena is
large.

On the other hand, whena approachesac
+, the values of

kGlJ
S become larger than the numerical results. This discrep-

ancy can be explained as follows. As mentioned in Sec. III,
since there is effective crowd-anticrowd cancellation, the his-
tory in the MG becomes more uniform asa approachesac

+

[21]. In contrast, although players still have the same chance
to pick anticorrelated pairs separately at the beginning of the
game in our sequential simulation, the strategy actually used
by each player at each turn is not determined by its virtual
score, but a randomly assigned disorder spin variablemi in-
stead. Consequently, two players are less likely to be frozen
on an anticorrelated strategy pair. This makes the crowd-
anticrowd cancellation less effective among frozen players in

our sequential simulation. So, the actions among these frozen
players may give a strong bias in the output, especially for
a<ac, where frozen probability is highest. In turn, the his-
tory becomes much more nonuniform. This greatly increases
the Gini index as some players have more chance to stay at
the winning(or losing) side.

Finally, we remark that bothkGlJ
R andkGlJ

S calculated by
the stochastic simulation are independent ofM. This is ex-
pected, since the results of the replica calculation do not
depend explicitly onM.

V. CONCLUSION

In summary, we have investigated the inequality of wealth
among players in the MG using the well-known measure in
economics called the Gini index. In particular, our numerical
findings show that the wealth inequality of players is very
severe near the point of maximum global cooperationac.
That is to say, in the minority game, global cooperation
comes hand in hand with uneven distribution of players’
wealth. Specifically, a significant number of players are
forced to use the low ranking strategies and cooperate with
those players using the high ranking strategies since the
number of strategies at play and the reduced strategy space
size are of the same order whenevera→ac. In this respect,
we have showed that the crowd-anticrowd theory offers a
simple and effective platform to study the wealth inequality
in the MG.

In addition, we have studied the Gini index semianalyti-
cally by mapping the system of the MG to a spin glass. With
this formalism, we semianalytically reproduce our numeri-
cally simulated Gini index in the asymmetric phase of MG
by investigating the stationary state properties of MG using
the replica trick.

ACKNOWLEDGMENTS

We would like to thank the Computer Center of HKU for
their helpful support in providing the use of the High Perfor-
mance Computing Cluster for the simulation reported in this
paper. Useful conversations with W. C. Man are also grate-
fully acknowledged.

[1] J. Feigenbaum, Rep. Prog. Phys.66, 1611(2003).
[2] D. Challet and M. Marsili, Phys. Rev. E60, R6271(1999).
[3] D. Challet, M. Marsili, and R. Zecchina, Phys. Rev. Lett.84,

1824 (2000).
[4] M. Marsili, D. Challet, and R. Zecchina, Physica A280, 522

(2000).
[5] D. Challet and Y. C. Zhang, Physica A246, 407 (1997).
[6] Y. C. Zhang, Europhys. News29, 51 (1998).
[7] R. Savit, R. Manuca, and R. Riolo, Phys. Rev. Lett.82, 2203

(1999).
[8] D. Challet and Y. C. Zhang, Physica A256, 514 (1998).
[9] N. F. Johnson, P. M. Hui, R. Jonson, and T. S. Lo, Phys. Rev.

Lett. 82, 3360(1999).
[10] D. Challet, M. Marsili, and Y. C. Zhang, Physica A276, 284

(2000).
[11] D. Challet, M. Marsili, and Y. C. Zhang, Physica A299, 228

(2001).
[12] M. Hart, P. Jefferies, N. F. Johnson, and P. M. Hui, Physica A

298, 537 (2001).
[13] M. Hart, P. Jefferies, N. F. Johnson, and P. M. Hui, Eur. Phys.

J. B 20, 547 (2001).
[14] M. L. Hart and N. F. Johnson, e-print cond-mat/0212088.
[15] Z. M. Berrebi and J. Silber, Quart. J. Econom.100, 807

(1985).

FIG. 3. The average Gini index found in stochastic simulation
using sequential historykGlJ

S versus the control parametera in the
asymmetric phase of MG withNs=500P andS=2 for differentM.
For comparison purpose, the solid line indicates the corresponding
numerical results in MG withM =9.

HO, CHOW, AND CHAU PHYSICAL REVIEW E70, 066110(2004)

066110-6



[16] C. N. Chen, T. W. Tsaur, and T. S. Rhai, Oxford Econ. Papers
34, 473 (1982).

[17] Z. M. Berrebi and J. Silber, Oxford Econ. Papers37, 525
(1985).

[18] C. N. Chen, T. W. Tsaur, and T. S. Rhai, Oxford Econ. Papers

37, 527 (1985).
[19] R. Manuca, Y. Li, R. Riolo, and R. Savit, Physica A282, 559

(2000).
[20] D. Challet(private communication).
[21] D. Challet and M. Marsili, Phys. Rev. E62, 1862(2000).

WEALTH INEQUALITY IN … PHYSICAL REVIEW E 70, 066110(2004)

066110-7


