1,110 research outputs found

    Regulation of TGF-β receptor activity

    Get PDF
    TGF-β signaling regulates diverse cellular processes, including cell proliferation, differentiation, apoptosis, cell plasticity and migration. Its dysfunctions can result in various kinds of diseases, such as cancer and tissue fibrosis. TGF-β signaling is tightly regulated at different levels along the pathway, and modulation of TGF-β receptor activity is a critical step for signaling regulation. This review focuses on our recent understanding of regulation of TGF-β receptor activity

    Alkali activation of MSWI bottom ash: Effects of the SiO2/Na2O ratio

    Get PDF
    Due to its high mineral content, the valorization of bottom ash from municipal solid waste incineration (MSWI) as potential precursor in the application of alkali activated materials is attracting attention. In literature there is a large variation on using of the activator solutions to activate MSWI bottom ash. In most studies, the bulk composition rather than reactive fraction of MSWI bottom ash is considered in the alkali activation design. However a large part of the Si present in MSWI bottom ash is in the form of non-reactive quartz. In this study, mainly slag fraction was considered, the glass, ceramic and natural stony materials were removed before MSWI bottom ash was used as precursor. An efficient activator solution was developed by considering the reactive silica content of MSWI bottom ash determined by a dissolution test. Alkali activator was made of NaOH solution with concentration varying from 4M to 8M and Na2SiO3 solution with moduli of 0.75 to 1.5. The effects of SiO2/Na2O ratio, where the oxide ratio for SiO2 consisting of the reactive Si contributed by MSWI bottom ash slag and by the Na2SiO3 in the activator solution, on the compressive strength of alkali activated MSWI bottom ash were studied. XRD was used to determine the reaction products. SEM was used to observe the morphology of synthesized binder phase and EDX will be used to determine the binder chemistry

    The investigation of the potential of municipal solid waste incineration (MSWI) fly ash as a mineral resource

    Get PDF
    Please click Additional Files below to see the full abstract

    Where PI3K/Akt Meets Smads: The Crosstalk Determines Human Embryonic Stem Cell Fate

    Get PDF
    Coordinated interactions between signaling networks govern the balance of cell fate decisions in human embryonic stem cells. In this issue, Singh et al. (2012) report that PI3K/Akt signaling switches Activin/Smad activity between pro-self-renewal and prodifferentiation by regulating ERK and GSK3β/β-catenin signaling

    The Tragedy of Corruption Corruption as a social dilemma

    Get PDF
    We investigate corruption as a social dilemma by means of a bribery game in which a risk of collective failure is introduced when the number of public officials accepting a bribe from firms reaches a certain threshold. We show that, despite the social risk, the pursuit of individual interest prevails and leads to the elimination of honest officials over time. Reducing the size of the groups while increasing the probability of collective failure diminishes the public officials' corruptibility but is not sufficient to eliminate the tragedy of corruption altogether

    Crystal Structure of the Cytoplasmic Domain of the Type I TGF β Receptor in Complex with FKBP12

    Get PDF
    AbstractActivation of the type I TGF β receptor (T β R-I) requires phosphorylation of a regulatory segment known as the GS region, located upstream of the serine/threonine kinase domain in the cytoplasmic portion of the receptor. The crystal structure of a fragment of unphosphorylated T β R-I, containing both the GS region and the catalytic domain, has been determined in complex with the FK506-binding protein FKBP12. T β R-I adopts an inactive conformation that is maintained by the unphosphorylated GS region. FKBP12 binds to the GS region of the receptor, capping the T β R-II phosphorylation sites and further stabilizing the inactive conformation of T β R-I. Certain structural features at the catalytic center of T β R-I are characteristic of tyrosine kinases rather than Ser/Thr kinases

    Thermal Treatment on MSWI Bottom Ash for the Utilisation in Alkali Activated Materials

    Get PDF
    At present, most municipal solid waste incineration (MSWI) bottom ash is directly landfilled, raising concerns about environmental issues and loss of resources. Due to its high mineral content, MSWI bottom ash is now being considered as a raw material to prepare alkali-activated materials (AAMs). However, the mineral fraction unavoidably contains metallic aluminium (Al) and zinc (Zn) scraps (<1 wt.%), which easily oxidise and generate H2gas under alkaline conditions. As a result, when using MSWI bottom ash to prepare AAMs, the formation of a porous structure, as well as expansive cracks (both detrimental to strength development) can be observed. In this research, thermal treatment of MSWI bottom ash, at temperatures of 500 and 1000 °C, was performed to deal with the issue caused by metallic Al/Zn. A series of tests, including Quantitative X-ray diffraction (QXRD) analysis, fineness measurements (particle size and surface area), and the dissolution test, were conducted to examine the effects of thermal treatment on as-received bottom ash. The results indicate that it is difficult to oxidise metallic Al/Zn at 500°C, but heating up to 1000 °C can realize the complete oxidation of Al/Zn, which in turn allows the wide utilisation of bottom ash in AAMs. Keywords: MSWI bottom ash, thermal treatment, alkali-activated materials
    corecore