5,755 research outputs found

    Spin transfer in a ferromagnet-quantum dot and tunnel barrier coupled Aharonov-Bohm ring system with Rashba spin-orbit interactions

    Full text link
    The spin transfer effect in ferromagnet-quantum dot (insulator)-ferromagnet Aharonov-Bohm (AB) ring system with Rashba spin-orbit (SO) interactions is investigated by means of Keldysh nonequilibrium Green function method. It is found that both the magnitude and direction of the spin transfer torque (STT) acting on the right ferromagnet electrode can be effectively controlled by changing the magnetic flux threading the AB ring or the gate voltage on the quantum dot. The STT can be greatly augmented by matching a proper magnetic flux and an SO interaction at a cost of low electrical current. The STT, electrical current, and spin current are uncovered to oscillate with the magnetic flux. The present results are expected to be useful for information storage in nanospintronics.Comment: 17pages, 7figure

    Physical mechanism of superluminal traversal time: interference between multiple finite wave packets

    Get PDF
    The mechanism of superluminal traversal time through a potential well or potential barrier is investigated from the viewpoint of interference between multiple finite wave packets, due to the multiple reflections inside the well or barrier. In the case of potential-well traveling that is classically allowed, each of the successively transmitted constituents is delayed by a subluminal time. When the thickness of the well is much smaller in comparision with a characteristic length of the incident wave packet, the reshaped wave packet in transmission maintains the profile of the incident wave packet. In the case of potential-barrier tunneling that is classically forbidden, though each of the successively transmitted constituents is delayed by a time that is independent of the barrier thickness, the interference between multiple transmitted constituents explains the barrier-thickness dependence of the traversal time for thin barriers and its barrier-thickness independence for thick barriers. This manifests the nature of Hartman effect.Comment: 9 pages, 3 figures, Some comments and suggestions are appreciate

    Transient energy excitation in shortcuts to adiabaticity for the time dependent harmonic oscillator

    Full text link
    There is recently a surge of interest to cut down the time it takes to change the state of a quantum system adiabatically. We study for the time-dependent harmonic oscillator the transient energy excitation in speed-up processes designed to reproduce the initial populations at some predetermined final frequency and time, providing lower bounds and examples. Implications for the limits imposed to the process times and for the principle of unattainability of the absolute zero, in a single expansion or in quantum refrigerator cycles, are drawn.Comment: 7 pages, 6 figure

    Adversarial Variational Embedding for Robust Semi-supervised Learning

    Full text link
    Semi-supervised learning is sought for leveraging the unlabelled data when labelled data is difficult or expensive to acquire. Deep generative models (e.g., Variational Autoencoder (VAE)) and semisupervised Generative Adversarial Networks (GANs) have recently shown promising performance in semi-supervised classification for the excellent discriminative representing ability. However, the latent code learned by the traditional VAE is not exclusive (repeatable) for a specific input sample, which prevents it from excellent classification performance. In particular, the learned latent representation depends on a non-exclusive component which is stochastically sampled from the prior distribution. Moreover, the semi-supervised GAN models generate data from pre-defined distribution (e.g., Gaussian noises) which is independent of the input data distribution and may obstruct the convergence and is difficult to control the distribution of the generated data. To address the aforementioned issues, we propose a novel Adversarial Variational Embedding (AVAE) framework for robust and effective semi-supervised learning to leverage both the advantage of GAN as a high quality generative model and VAE as a posterior distribution learner. The proposed approach first produces an exclusive latent code by the model which we call VAE++, and meanwhile, provides a meaningful prior distribution for the generator of GAN. The proposed approach is evaluated over four different real-world applications and we show that our method outperforms the state-of-the-art models, which confirms that the combination of VAE++ and GAN can provide significant improvements in semisupervised classification.Comment: 9 pages, Accepted by Research Track in KDD 201

    Fast and robust spin manipulation in a quantum dot by electric fields

    Full text link
    We apply an invariant-based inverse engineering method to control by time-dependent electric fields electron spin dynamics in a quantum dot with spin-orbit coupling in a weak magnetic field. The designed electric fields provide a shortcut to adiabatic processes that flips the spin rapidly, thus avoiding decoherence effects. This approach, being robust with respect to the device-dependent noise, can open new possibilities for the spin-based quantum information processing.Comment: 7 pages, 6 figures, with supplemental material. Errors in the published version have been correcte

    Inward Motions of the Compact SiO Masers Around VX Sagittarii

    Full text link
    We report Very Long Baseline Array (VLBA) observations of 43 GHz v=1, J=1-0 SiO masers in the circumstellar envelope of the M-type semi-regular variable star VX Sgr at 3 epochs during 1999 April-May. These high-resolution VLBA images reveal a persistent ringlike distribution of SiO masers with a projected radius of ~3 stellar radii. The typical angular size of 0.5 mas for individual maser feature was estimated from two-point correlation function analysis for maser spots. We found that the apparent size scale of maser features was distinctly smaller than that observed in the previous observations by comparing their fractions of total power imaged. This change in the size scale of maser emission may be related to stellar activity that caused a large SiO flare during our observations. Our observations confirmed the asymmetric distribution of maser emission, but the overall morphology has changed significantly with the majority of masers clustering to the north-east of the star compared to that lying to the south-west direction in 1992. By identifying 42 matched maser features appearing in all the three epochs, we determined the contraction of an SiO maser shell toward VX Sgr at a proper motion of -0.507 mas/yr, corresponding to a velocity of about 4 km/s at a distance of 1.7 kpc to VX Sgr. Such a velocity is on the order of the sound speed, and can be easily explained by the gravitational infall of material from the circumstellar dust shell.Comment: 26 pages, 5 figures, 4 tables, accepted for publication in Ap

    Droplet ejection and sliding on a flapping film

    Get PDF
    Citation: X. Chen, N. Doughramaji, A.R. Betz, M.M. Derby, Droplet departure and ejection on flapping films, AIP Advances, 7, 035014.Water recovery and subsequent reuse are required for human consumption as well as industrial, and agriculture applications. Moist air streams, such as cooling tower plumes and fog, represent opportunities for water harvesting. In this work, we investigate a flapping mechanism to increase droplet shedding on thin, hydrophobic films for two vibrational cases (e.g., ± 9 mm and 11 Hz; ± 2 mm and 100 Hz). Two main mechanisms removed water droplets from the flapping film: vibrational-induced coalescence/sliding and droplet ejection from the surface. Vibrations mobilized droplets on the flapping film, increasing the probability of coalescence with neighboring droplets leading to faster droplet growth. Droplet departure sizes of 1–2 mm were observed for flapping films,compared to 3–4 mm on stationary films, which solely relied on gravity for droplet removal. Additionally, flapping films exhibited lower percentage area coverage by water after a few seconds. The second removal mechanism, droplet ejection was analyzed with respect to surface wave formation and inertia. Smaller droplets (e.g., 1-mm diameter) were ejected at a higher frequency which is associated with a higher acceleration. Kinetic energy of the water was the largest contributor to energy required to flap the film, and low energy inputs (i.e., 3.3 W/m2) were possible. Additionally, self-flapping films could enable novel water collection and condensation with minimal energy input

    Distribution of O-Acetylated Sialic Acids among Target Host Tissues for Influenza Virus.

    Get PDF
    Sialic acids (Sias) are important glycans displayed on the cells and tissues of many different animals and are frequent targets for binding and modification by pathogens, including influenza viruses. Influenza virus hemagglutinins bind Sias during the infection of their normal hosts, while the encoded neuraminidases and/or esterases remove or modify the Sia to allow virion release or to prevent rebinding. Sias naturally occur in a variety of modified forms, and modified Sias can alter influenza virus host tropisms through their altered interactions with the viral glycoproteins. However, the distribution of modified Sia forms and their effects on pathogen-host interactions are still poorly understood. Here we used probes developed from viral Sia-binding proteins to detect O-acetylated (4-O-acetyl, 9-O-acetyl, and 7,9-O-acetyl) Sias displayed on the tissues of some natural or experimental hosts for influenza viruses. These modified Sias showed highly variable displays between the hosts and tissues examined. The 9-O-acetyl (and 7,9-) modified Sia forms were found on cells and tissues of many hosts, including mice, humans, ferrets, guinea pigs, pigs, horses, dogs, as well as in those of ducks and embryonated chicken egg tissues and membranes, although in variable amounts. The 4-O-acetyl Sias were found in the respiratory tissues of fewer animals, being primarily displayed in the horse and guinea pig, but were not detected in humans or pigs. The results suggest that these Sia variants may influence virus tropisms by altering and selecting their cell interactions. IMPORTANCE Sialic acids (Sias) are key glycans that control or modulate many normal cell and tissue functions while also interacting with a variety of pathogens, including many different viruses. Sias are naturally displayed in a variety of different forms, with modifications at several positions that can alter their functional interactions with pathogens. In addition, Sias are often modified or removed by enzymes such as host or pathogen esterases or sialidases (neuraminidases), and Sia modifications can alter those enzymatic activities to impact pathogen infections. Sia chemical diversity in different hosts and tissues likely alters the pathogen-host interactions and influences the outcome of infection. Here we explored the display of 4-O-acetyl, 9-O-acetyl, and 7,9-O-acetyl modified Sia forms in some target tissues for influenza virus infection in mice, humans, birds, guinea pigs, ferrets, swine, horses, and dogs, which encompass many natural and laboratory hosts of those viruses

    Two-photon interference with true thermal light

    Full text link
    Two-photon interference and "ghost" imaging with entangled light have attracted much attention since the last century because of the novel features such as non-locality and sub-wavelength effect. Recently, it has been found that pseudo-thermal light can mimic certain effects of entangled light. We report here the first observation of two-photon interference with true thermal light.Comment: 4 pages, 5 figures, PRA72, 043805 (2005
    corecore