70 research outputs found

    The neural basis of responsibility attribution in decision-making

    Get PDF
    Social responsibility links personal behavior with societal expectations and plays a key role in affecting an agent's emotional state following a decision. However, the neural basis of responsibility attribution remains unclear. In two previous event-related brain potential (ERP) studies we found that personal responsibility modulated outcome evaluation in gambling tasks. Here we conducted a functional magnetic resonance imaging (fMRI) study to identify particular brain regions that mediate responsibility attribution. In a context involving team cooperation, participants completed a task with their teammates and on each trial received feedback about team success and individual success sequentially. We found that brain activity differed between conditions involving team success vs. team failure. Further, different brain regions were associated with reinforcement of behavior by social praise vs. monetary reward. Specifically, right temporoparietal junction (RTPJ) was associated with social pride whereas dorsal striatum and dorsal anterior cingulate cortex (ACC) were related to reinforcement of behaviors leading to personal gain. The present study provides evidence that the RTPJ is an important region for determining whether self-generated behaviors are deserving of praise in a social context

    Floquet Engineering of Nonequilibrium Valley-Polarized Quantum Anomalous Hall Effect with Tunable Chern Number

    Full text link
    Numerous attempts have been made so far to explore the quantum anomalous Hall effect (QAHE), but the ultralow observed temperature strongly hinders its practical applications. Hence, it is of great interest to go beyond the existing paradigm of QAHE. Here, we propose that Floquet engineering offers a strategy to realize the QAHE via hybridization of Floquet-Bloch bands. Based on first-principles calculations and Floquet theorem, we unveil that nonequilibrium valley-polarized QAHE (VP-QAHE), independent of magnetic orders, is widely present in ferromagnetic and nonmagnetic members of two-dimensional family materials MMSi2_2Z4Z_4 (MM = Mo, W, V; ZZ = N, P, As) by irradiating circularly polarized light (CPL). Remarkably, by tuning the frequency, intensity, and handedness of incident CPL, the Chern number of VP-QAHE is highly tunable and up to C=±4\mathcal{C}=\pm 4. We reveal that such Chern number tunable VP-QAHE attributes to light-induced trigonal warping and multiple band inversion at different valleys. The valley-resolved chiral edge states and quantized plateau of Hall conductance, which facilitates the experimental measurement, are visible inside the global band gap. Our work not only establishes Floquet Engineering of nonequilibrium VP-QAHE with tunable Chern number in realistic materials, but also provides a promising avenue to explore emergent topological phases under light irradiation.Comment: 6 pages, 4 figure

    Above 400 K Robust Perpendicular Ferromagnetic Phase in a Topological Insulator

    Get PDF
    The quantum anomalous Hall effect (QAHE) that emerges under broken time-reversal symmetry in topological insulators (TI) exhibits many fascinating physical properties for potential applications in nano-electronics and spintronics. However, in transition-metal doped TI, the only experimentally demonstrated QAHE system to date, the effect is lost at practically relevant temperatures. This constraint is imposed by the relatively low Curie temperature (Tc) and inherent spin disorder associated with the random magnetic dopants. Here we demonstrate drastically enhanced Tc by exchange coupling TI to Tm3Fe5O12, a high-Tc magnetic insulator with perpendicular magnetic anisotropy. Signatures that the TI surface states acquire robust ferromagnetism are revealed by distinct squared anomalous Hall hysteresis loops at 400 K. Point-contact Andreev reflection spectroscopy confirms that the TI surface is indeed spin-polarized. The greatly enhanced Tc, absence of spin disorder, and perpendicular anisotropy are all essential to the occurrence of the QAHE at high temperatures

    High Self-Control Reduces Risk Preference: The Role of Connectivity Between Right Orbitofrontal Cortex and Right Anterior Cingulate Cortex

    Get PDF
    Risk preference, the preference for risky choices over safe alternatives, has a great impact on many fields, such as physical health, sexual safety and financial decision making. Ample behavioral research has attested that inadequate self-control can give rise to high risk preference. However, little is known about the neural substrates underlying the effect of self-control on risk preference. To address this issue, we combined voxel-based morphometry (VBM) with resting-state functional connectivity (RSFC) analyses to explore the neural basis underlying the effect of self-control on risk preference across two independent samples. In sample 1 (99 participants; 47 males; 20.37 ± 1.63 years), the behavioral results indicated that the scores of self-control were significantly and negatively correlated with risk preference (indexed by gambling rate). The VBM analyses demonstrated that the higher risk preference was correlated with smaller gray matter volumes in right orbitofrontal cortex (rOFC) and right posterior parietal cortex. In the independent sample 2 (80 participants; 33 males; 20.33 ± 1.83 years), the RSFC analyses ascertained that the functional connectivity of rOFC and right anterior cingulate cortex (rACC) was positively associated with risk preference. Furthermore, the mediation analysis identified that self-control mediated the impact of functional connectivity of rOFC-rACC on risk preference. These findings suggest the functional coupling between the rOFC and rACC might account for the association between self-control and risk preference. The present study extends our understanding on the relationship between self-control and risk preference, and reveals possible neural underpinnings underlying this association

    Superconducting Diode Effect and Large Magnetochiral Anisotropy in Td_d-MoTe2_2 Thin Film

    Full text link
    In the absence of time-reversal invariance, metals without inversion symmetry may exhibit nonreciprocal charge transport -- a magnetochiral anisotropy that manifests as unequal electrical resistance for opposite current flow directions. If superconductivity also sets in, the charge transmission may become dissipationless in one direction while remaining dissipative in the opposite, thereby realizing a superconducting diode. Through both direct-current and alternating-current measurements, we study the nonreciprocal effects in thin films of the noncentrosymmetric superconductor Td_d-MoTe\textsubscript{2} with disorders. We observe nonreciprocal superconducting critical currents with a diode efficiency close to 20\%~, and a large magnetochiral anisotropy coefficient up to \SI{5.9e8}{\per\tesla\per\ampere}, under weak out-of-plane magnetic field in the millitesla range. The great enhancement of rectification efficiency under out-of-plane magnetic field is likely abscribed to the vortex ratchet effect, which naturally appears in the noncentrosymmetric superconductor with disorders. Intriguingly, unlike the finding in Rashba systems, the strongest in-plane nonreciprocal effect does not occur when the field is perpendicular to the current flow direction. We develop a phenomenological theory to demonstrate that this peculiar behavior can be attributed to the asymmetric structure of spin-orbit coupling in Td_d-MoTe\textsubscript{2}. Our study highlights how the crystallographic symmetry critically impacts the nonreciprocal transport, and would further advance the research for designing the superconducting diode with the best performance.Comment: 7 pages, 5figure

    A longitudinal resource for population neuroscience of school-age children and adolescents in China

    Get PDF
    During the past decade, cognitive neuroscience has been calling for population diversity to address the challenge of validity and generalizability, ushering in a new era of population neuroscience. The developing Chinese Color Nest Project (devCCNP, 2013–2022), the first ten-year stage of the lifespan CCNP (2013–2032), is a two-stages project focusing on brain-mind development. The project aims to create and share a large-scale, longitudinal and multimodal dataset of typically developing children and adolescents (ages 6.0–17.9 at enrolment) in the Chinese population. The devCCNP houses not only phenotypes measured by demographic, biophysical, psychological and behavioural, cognitive, affective, and ocular-tracking assessments but also neurotypes measured with magnetic resonance imaging (MRI) of brain morphometry, resting-state function, naturalistic viewing function and diffusion structure. This Data Descriptor introduces the first data release of devCCNP including a total of 864 visits from 479 participants. Herein, we provided details of the experimental design, sampling strategies, and technical validation of the devCCNP resource. We demonstrate and discuss the potential of a multicohort longitudinal design to depict normative brain growth curves from the perspective of developmental population neuroscience. The devCCNP resource is shared as part of the “Chinese Data-sharing Warehouse for In-vivo Imaging Brain” in the Chinese Color Nest Project (CCNP) – Lifespan Brain-Mind Development Data Community (https://ccnp.scidb.cn) at the Science Data Bank

    The triple psychological and neural bases underlying procrastination: Evidence based on a two-year longitudinal study

    No full text
    The triple brain anatomical network model of procrastination theorized procrastination as the result of psychological and neural dysfunction implicated in self-control, emotion regulation and episodic prospection. However, no studies have provided empirical evidence for such model. To address this issue, we designed a two-wave longitudinal study where participants underwent the resting-state scanning and completed the questionnaires at two time-points that spanned 2-year apart (T1, n = 457; T2, n = 457). Using the cross-lagged panel network modeling (CLPN), we found that triple psychological components at T1, including self-control, emotion regulation (i.e., reappraisal) and episodic prospection, negatively predicted procrastination at T2 in the temporal network. Moreover, the CLPN modeling found that functional connectivity between networks accounting for episodic prospection (EP) and emotion regulation (ER) positively predicted future procrastination in the temporal network. The centrality analyzes further showed that procrastination was greatly affected by other nodes, whilst the psychological component (i.e., episodic prospection), and the functional network connectivity (FNC) of EP- ER exerted strongest impacts on other nodes in the networks, which indicated that treatments targeting episodic prospection might largely help reduce procrastination. Collectively, these findings firstly provide evidence for testifying the triple brain anatomical network model of procrastination, and highlights the contribution of triple psychological and neural components implicated in self-control, emotion regulation and episodic prospection to procrastination that enhances our understanding of causes of procrastination

    Capacity Reduction Pressure, Financing Constraints, and Enterprise Sustainable Innovation Investment: Evidence from Chinese Manufacturing Companies

    No full text
    Resolving the problem of excess production capacity through sustainable technological innovation is an important issue facing the Chinese economy in achieving high-quality development. The Guiding Opinions of the State Council on Resolving the Contradiction of Severe Overcapacity promulgated by the government in 2013 undoubtedly had a huge external impact on the traditionally competitive manufacturing market. This paper uses 6680 company-year sample observations of 1609 A-share manufacturing listed companies in China from 2010 to 2017 to examine the impact of capacity reduction pressure on ‘corporate sustainable innovation’ (the strategic response made by the enterprise administrator to cope with the impacts of the external environment including economic, social and environmental aspects) investment and the moderating role of financing constraints on this relationship. The research shows that after the promulgation of the Guiding Opinions, the degree of overcapacity had a significant positive effect on the R&D investment of enterprises, indicating that the policy to resolve overcapacity promoted their sustainable innovation investment. Such a phenomenon indicates that, to a certain extent, in the context of capacity reduction, companies have strong pressure and motivation to seek a way out through sustainable innovation. However, financing constraints have a significant inhibitory influence on the anti-forcing effect of the capacity reduction policy, indicating that the ability of enterprises to respond to external capacity reduction policies is subject to their own limited financing. Further investigation shows that capacity reduction pressure mainly promotes the sustainable innovation investment of private enterprises and has no significant impact on that of state-owned enterprises. This may be because private enterprises struggled more for survival during the transition period. The results of this paper provide a theoretical basis and reference value for the formulation of government policies and the development of enterprises

    Heat Absorption and Release Characteristics on Heat Storage Walls with Different Materials

    No full text
    To analyze the storage performance of the envelope structure, based on the law of conservation of energy, the ANSYS software was employed to perform thermal analysis on three conventional wall materials and phase change materials, and the temperature fields and minimum temperature difference of the walls with different materials were obtained. The heat absorption and release characteristics of different wall materials were studied. Comparing the heat absorption and release characteristics of phase change materials, it was concluded that the phase change materials had better heat storage capacity, which provided a basis for promoting and developing low energy consumption technologies for buildings

    The value of emotion: how does episodic prospection modulate delay discounting?

    Get PDF
    BACKGROUND: Humans often show impatience when making intertemporal choice for monetary rewards, preferring small rewards delivered immediately to larger rewards delivered after a delay, which reflects a fundamental psychological principle: delay discounting. However, we propose that episodic prospection humans can vividly envisage exerts a strong and broad influence on individuals' delay discounting. Specifically, episodic prospection may affect individuals' intertemporal choice by the negative or positive emotion of prospection. METHODOLOGY/PRINCIPAL FINDINGS: The present study explored how episodic prospection modulated delay discounting by emotion. Study 1 showed that participants were more inclined to choose the delayed but larger rewards when they imaged positive future events than when they did not image events; Study 2 showed that participants were more inclined to choose the immediate but smaller rewards when they imaged negative future events than when they did not image events; In contrast, study 3 showed that choice preferences of participants when they imaged neutral future events were the same as when they did not image events. CONCLUSIONS/SIGNIFICANCE: By manipulating the emotion valence of episodic prospection, our findings suggested that positive emotion made individuals tend to choose delayed rewards, while negative emotion made individuals tend to choose immediate rewards. Only imaging events with neutral emotion did not affect individuals' choice preference. Thus, the valence of imaged future events' emotion might play an important role in individuals' intertemporal choice. It is possible that the valence of emotion may affect the changed direction (promote or inhibit) of individuals' delay discounting, while the ability to image future events affects the changed degree of individuals' delay discounting
    • …
    corecore