5,892 research outputs found

    Age-Related Mineralization Heterogeneity in Human Femoral Cortical Bone

    Get PDF

    The Natural History of Hepatitis C Virus (HCV) Infection

    Get PDF
    Hepatitis C virus (HCV) is a leading cause of chronic liver disease, cirrhosis, and hepatocellular carcinoma, as well as the most common indication for liver transplantation in many countries. Although the incidence of hepatitis C infection has dramatically decreased during the past decade, the worldwide reservoir of chronically infected persons is estimated at 170 million, or 3% of the global population. There is much controversy surrounding the natural history of hepatitis C infection. The rate of chronic HCV infection is affected by a person's age, gender, race, and viral immune response. Approximately 75%-85% of HCV-infected persons will progress to chronic HCV infection, and are at risk for the development of extrahepatic manifestations, compensated and decompensated cirrhosis, and hepatocellular carcinoma (HCC). The rate of progression to cirrhosis is highly variable, and is influenced by several factors, including the amount of alcohol consumption, age of initial HCV infection, degree of inflammation and fibrosis on liver biopsy, HIV and HBV coinfection, and comordid conditions. An estimated 10%-15% of HCV-infected persons will advance to cirrhosis within the first 20 years. Persons with cirrhosis are at increased risk of developing HCC. An understanding of the natural history of hepatitis C is essential to effectively manage, treat, and counsel individuals with HCV infection

    Reflection Symmetries for Multiqubit Density Operators

    Full text link
    For multiqubit density operators in a suitable tensorial basis, we show that a number of nonunitary operations used in the detection and synthesis of entanglement are classifiable as reflection symmetries, i.e., orientation changing rotations. While one-qubit reflections correspond to antiunitary symmetries, as is known for example from the partial transposition criterion, reflections on the joint density of two or more qubits are not accounted for by the Wigner Theorem and are well-posed only for sufficiently mixed states. One example of such nonlocal reflections is the unconditional NOT operation on a multiparty density, i.e., an operation yelding another density and such that the sum of the two is the identity operator. This nonphysical operation is admissible only for sufficiently mixed states.Comment: 9 page

    Use of graphene as protection film in biological environments

    Get PDF
    Corrosion of metal in biomedical devices could cause serious health problems to patients. Currently ceramics coating materials used in metal implants can reduce corrosion to some extent with limitations. Here we proposed graphene as a biocompatible protective film for metal potentially for biomedical application. We confirmed graphene effectively inhibits Cu surface from corrosion in different biological aqueous environments. Results from cell viability tests suggested that graphene greatly eliminates the toxicity of Cu by inhibiting corrosion and reducing the concentration of Cu(2+) ions produced. We demonstrated that additional thiol derivatives assembled on graphene coated Cu surface can prominently enhance durability of sole graphene protection limited by the defects in graphene film. We also demonstrated that graphene coating reduced the immune response to metal in a clinical setting for the first time through the lymphocyte transformation test. Finally, an animal experiment showed the effective protection of graphene to Cu under in vivo condition. Our results open up the potential for using graphene coating to protect metal surface in biomedical application

    sscMap: An extensible Java application for connecting small-molecule drugs using gene-expression signatures

    Get PDF
    Background: Connectivity mapping is a process to recognize novel pharmacological and toxicological properties in small molecules by comparing their gene expression signatures with others in a database. A simple and robust method for connectivity mapping with increased specificity and sensitivity was recently developed, and its utility demonstrated using experimentally derived gene signatures. Results: This paper introduces sscMap (statistically significant connections' map), a Java application designed to undertake connectivity mapping tasks using the recently published method. The software is bundled with a default collection of reference gene-expression profiles based on the publicly available dataset from the Broad Institute Connectivity Map 02, which includes data from over 7000 Affymetrix microarrays, for over 1000 small-molecule compounds, and 6100 treatment instances in 5 human cell lines. In addition, the application allows users to add their custom collections of reference profiles and is applicable to a wide range of other 'omics technologies. Conclusions: The utility of sscMap is two fold. First, it serves to make statistically significant connections between a user-supplied gene signature and the 6100 core reference profiles based on the Broad Institute expanded dataset. Second, it allows users to apply the same improved method to custom-built reference profiles which can be added to the database for future referencing. The software can be freely downloaded from http://purl.oclc.org/NET/sscMapComment: 3 pages, 1 table, 1 eps figur

    A novel fluorescent "turn-on" chemosensor for nanomolar detection of Fe(III) from aqueous solution and its application in living cells imaging

    Get PDF
    An electronically active and spectral sensitive fluorescent “turn-on” chemosensor (BTP-1) based on the benzo-thiazolo-pyrimidine unit was designed and synthesized for the highly selective and sensitive detection of Fe³⁺ from aqueous medium. With Fe³⁺, the sensor BTP-1 showed a remarkable fluorescence enhancement at 554 nm (λex=314 nm) due to the inhibition of photo-induced electron transfer. The sensor formed a host-guest complex in 1:1 stoichiometry with the detection limit down to 0.74 nM. Further, the sensor was successfully utilized for the qualitative and quantitative intracellular detection of Fe³⁺ in two liver cell lines i.e., HepG2 cells (human hepatocellular liver carcinoma cell line) and HL-7701 cells (human normal liver cell line) by a confocal imaging technique

    Characterization of Genotype by Planting Date Effects on Runner-Type Peanut Seed Germination and Vigor Response to Temperature

    Get PDF
    Experiments evaluated the genotype by environment effects on seed germination and vigor of the peanut runner-type cultivars ‘Georgia Green’, ‘AT3085R0’, ‘AT271516’, ‘Georgia 03L’, and ‘FR458’ grown under similar production practices, for three planting dates: April, May, and June in Georgia and Alabama. Objectives were to determine if time of planting and harvest dates would subsequently affect germination and vigor when tested using a thermal gradient devise (temperature range14 to 35 °C). Runner-type peanut seed grown in Dawson Georgia in 2008 had the strongest seed vigor with Germ80 of 22 to 40 growing degree days (GDD), and maximum incidence of germination rate 84.8-95.7% when planted April, May, and June 2008 across 15 seed lots. In contrast, seed harvested from plantings of May 2009 at Dawson Georgia exhibited Germ80 of 24 to 40 GDD with maximum incidence of germination rate 79.8-93.6%, but seed from April 2009 plantings had poor vigor of 56.8-72.8% and no amount of GDD could achieve Germ80, with similar results for June 2009 plantings for this location. For Headland April, May, and June 2009 plantings of the same cultivars, all seed had poor vigor, ≤75.6% maximum incidence for germination rate, and none obtained a measurable Germ80
    corecore