18,867 research outputs found
Optimization-based interactive segmentation interface for multiregion problems.
Interactive segmentation is becoming of increasing interest to the medical imaging community in that it combines the positive aspects of both manual and automated segmentation. However, general-purpose tools have been lacking in terms of segmenting multiple regions simultaneously with a high degree of coupling between groups of labels. Hierarchical max-flow segmentation has taken advantage of this coupling for individual applications, but until recently, these algorithms were constrained to a particular hierarchy and could not be considered general-purpose. In a generalized form, the hierarchy for any given segmentation problem is specified in run-time, allowing different hierarchies to be quickly explored. We present an interactive segmentation interface, which uses generalized hierarchical max-flow for optimization-based multiregion segmentation guided by user-defined seeds. Applications in cardiac and neonatal brain segmentation are given as example applications of its generality
An Iterative Cyclic Algorithm for Designing Vaccine Distribution Networks in Low and Middle-Income Countries
The World Health Organization's Expanded Programme on Immunization (WHO-EPI)
was developed to ensure that all children have access to common childhood
vaccinations. Unfortunately, because of inefficient distribution networks and
cost constraints, millions of children in many low and middle-income countries
still go without being vaccinated. In this paper, we formulate a mathematical
programming model for the design of a typical WHO-EPI network with the goal of
minimizing costs while providing the opportunity for universal coverage. Since
it is only possible to solve small versions of the model optimally, we describe
an iterative heuristic that cycles between solving restrictions of the original
problem and show that it can find very good solutions in reasonable time for
larger problems that are not directly solvable.Comment: International Joint Conference on Industrial Engineering and
Operations Management- ABEPRO-ADINGOR-IISE-AIM-ASEM (IJCIEOM 2019). Novi Sad,
Serbia, July 15-17t
Approximating Weighted Duo-Preservation in Comparative Genomics
Motivated by comparative genomics, Chen et al. [9] introduced the Maximum
Duo-preservation String Mapping (MDSM) problem in which we are given two
strings and from the same alphabet and the goal is to find a
mapping between them so as to maximize the number of duos preserved. A
duo is any two consecutive characters in a string and it is preserved in the
mapping if its two consecutive characters in are mapped to same two
consecutive characters in . The MDSM problem is known to be NP-hard and
there are approximation algorithms for this problem [3, 5, 13], but all of them
consider only the "unweighted" version of the problem in the sense that a duo
from is preserved by mapping to any same duo in regardless of their
positions in the respective strings. However, it is well-desired in comparative
genomics to find mappings that consider preserving duos that are "closer" to
each other under some distance measure [19]. In this paper, we introduce a
generalized version of the problem, called the Maximum-Weight Duo-preservation
String Mapping (MWDSM) problem that captures both duos-preservation and
duos-distance measures in the sense that mapping a duo from to each
preserved duo in has a weight, indicating the "closeness" of the two
duos. The objective of the MWDSM problem is to find a mapping so as to maximize
the total weight of preserved duos. In this paper, we give a polynomial-time
6-approximation algorithm for this problem.Comment: Appeared in proceedings of the 23rd International Computing and
Combinatorics Conference (COCOON 2017
Evolution of the second lowest extended state as a function of the effective magnetic field in the fractional quantum hall regime
It has been shown that, at a Landau level filling factor v=1/2, a two-dimensional electron system can be mathematically transformed into a composite fermion system interacting with a Chern-Simons gauge field. At v=1/2, the average of this Chern-Simons gauge field cancels the external magnetic field B-ext so that the effective magnetic field B-eff acting on the composite fermions is zero. Away from v=1/2, the composite fermions experience a net effective magnetic field B-eff. We present the first study of the evolution of the second lowest extended state in a vanishing effective magnetic field in the fractional quantum Hall regime. Our result shows that the evolution of the second lowest extended state has a good linear dependence on the effective magnetic field Beff within the composite fermion picture
Acclimation of morphology and physiology in turf grass to low light environment: A review
This short review elucidated the significance of the research on acclimation of the morphology and physiology in turf grass to low light environment, the mechanism of physiological response and the photosynthetic regulation and control of turf grass to suit low light environment. We also discussed current research problems and provided insight into future relevant research.Key words: Low light, morphological change, physiological acclimation, regulation mechanism, turf grass
Streptokinase is ineffective in restoring early myocardial reperfusion in Asian patients with acute myocardial infarction
published_or_final_versio
Interleukin-2 Confers Cardioprotection by Inhibiting Mitochondrial Permeability Transition Pore
In the present study, we determined whether interleukin-2 (IL-2) confers cardioprotection by inhibiting mitochondria permeability transition pore (MPTP) opening. In isolated rat hearts subject to 30 min ischemia and 120 min reperfusion (IR), IL-2 (50 U/ml) decreased the infarct size and LDH release, effects blocked by a selective kappa-opioid receptor antagonist, Nor-BNI (5 microM) or an opener of MPTP, atractyloside (Atr, 20 microM). In isolated ventricular myocytes subjected to anoxia and reoxygenation (AR), which reduced both the amplitude of the electrically induced [Ca2+]i transient and diastolic [Ca2+]i, IL-2 attenuated the AR-induced alterations and their effects were abolished by Atr. In addition, IL-2 attenuated the reduction in calcein fluorescence in myocytes subject to AR and reduced calcium-induced swelling in mitochondria of rat hearts subjected to IR, which were similar to effect of inhibitor of MPTP. The observations indicated that IL-2 confers cardioprotection by inhibiting the MPTP opening.published_or_final_versio
Chlamydia pneumoniae-induced foam cell formation requires MyD88-dependent and -independent signaling and is reciprocally modulated by liver X receptor activation.
Chlamydia pneumoniae is detected by macrophages and other APCs via TLRs and can exacerbate developing atherosclerotic lesions, but how that occurs is not known. Liver X receptors (LXRs) centrally control reverse cholesterol transport, but also negatively modulate TLR-mediated inflammatory pathways. We isolated peritoneal macrophages from wild-type, TLR2, TLR3, TLR4, TLR2/4, MyD88, TRIF, MyD88/TRIF, and IFN regulatory factor 3 (IRF3) KO mice, treated them with live or UV-killed C. pneumoniae in the presence or absence of oxidized LDL, then measured foam cell formation. In some experiments, the synthetic LXR agonist GW3965 was added to macrophages infected with C. pneumoniae in the presence of oxidized LDL. Both live and UV-killed C. pneumoniae induced IRF3 activation and promoted foam cell formation in wild-type macrophages, whereas the genetic absence of TLR2, TLR4, MyD88, TRIF, or IRF3, but not TLR3, significantly reduced foam cell formation. C. pneumoniae-induced foam cell formation was significantly reduced by the LXR agonist GW3965, which in turn inhibited C. pneumoniae-induced IRF3 activation, suggesting a bidirectional cross-talk. We conclude that C. pneumoniae facilitates foam cell formation via activation of both MyD88-dependent and MyD88-independent (i.e., TRIF-dependent and IRF3-dependent) pathways downstream of TLR2 and TLR4 signaling and that TLR3 is not involved in this process. This mechanism could at least partly explain why infection with C. pneumoniae accelerates the development of atherosclerotic plaque and lends support to the proposal that LXR agonists might prove clinically useful in suppressing atherogenesis
Structural and magnetic phase diagram of CeFeAsO1-xFx and its relationship to high-temperature superconductivity
We use neutron scattering to study the structural and magnetic phase
transitions in the iron pnictides CeFeAsO1-xFx as the system is tuned from a
semimetal to a high-transition-temperature (high-Tc) superconductor through
Fluorine (F) doping x. In the undoped state, CeFeAsO develops a structural
lattice distortion followed by a stripe like commensurate antiferromagnetic
order with decreasing temperature. With increasing Fluorine doping, the
structural phase transition decreases gradually while the antiferromagnetic
order is suppressed before the appearance of superconductivity, resulting an
electronic phase diagram remarkably similar to that of the high-Tc copper
oxides. Comparison of the structural evolution of CeFeAsO1-xFx with other
Fe-based superconductors reveals that the effective electronic band width
decreases systematically for materials with higher Tc. The results suggest that
electron correlation effects are important for the mechanism of high-Tc
superconductivity in these Fe pnictides.Comment: 19 pages, 5 figure
- …