82 research outputs found

    Integration of the Vegetation Phenology Module Improves Ecohydrological Simulation by the SWAT-Carbon Model

    Get PDF
    Vegetation phenology and hydrological cycles are closely interacted from leaf and species levels to watershed and global scales. As one of the most sensitive biological indicators of climate change, plant phenology is essential to be simulated accurately in hydrological models. Despite the Soil and Water Assessment Tool (SWAT) has been widely used for estimating hydrological cycles, its lack of integration with the phenology module has led to substantial uncertainties. In this study, we developed a process-based vegetation phenology module and coupled it with the SWAT-Carbon model to investigate the effects of vegetation dynamics on runoff in the upper reaches of Jinsha River watershed in China. The modified SWAT-Carbon model showed reasonable performance in phenology simulation, with root mean square error (RMSE) of 9.89 days for the start-of-season (SOS) and 7.51 days for the end-of-season (EOS). Simulations of both vegetation dynamics and runoff were also substantially improved compared to the original model. Specifically, the simulation of leaf area index significantly improved with the coefficient of determination (R2) increased by 0.62, the Nash–Sutcliffe efficiency (NSE) increased by 2.45, and the absolute percent bias (PBIAS) decreased by 69.0 % on average. Additionally, daily runoff simulation also showed notably improvement, particularly noticeable in June and October, with R2 rising by 0.22 and NSE rising by 0.43 on average. Our findings highlight the importance of integrating vegetation phenology into hydrological models to enhance modeling performance

    Effective Application of Solid Expandable Tubular During the Enhancement of Heavy Oil Recovery in China, Lessons Learned and Experience Shared

    Get PDF
    As the traditional thermal recovery became less effective in exploring the heavy oil reservoirs, some newly developed techniques such as chemical flooding, SAGD and HDCS are demonstrating their advantage in the recovery process in China. However, the ever increasingly used new techniques often compromised severely the well integrity as the flow of extremely high temperature fluid or gas caused quick damage to casing, leaving the wellbore less reliable. This compromise requires urgently a workover strategy that would maximize the well’s life span and guarantee the effectiveness of new techniques.Solid expandable tubular (SET) was field-proven in casing patching activities, but its application in the heavy oil recovery has not been attempted due to severe temperature challenge. We made innovations on the traditional structure of SET and got valuable results. The tubular after expansion was integrated with the original casing as a whole and the rubber was removed in-between, the wellbore size was maintained utmost and the casing was further strengthened. Meanwhile the expansion cone was put outside the tubular which is a big step forward in SET structure.Indoors experiments demonstrated sound performance of the new structure in the simulative temperature of 350 ℃, the plan for the field application was optimized based on the lessons collected in this experiment. High temperature well applications by SET were carried out in Liaohe oilfield which is famous for its heavy oil resource in China, and the detailed process as well as the outcome were compared and analyzed, finally the conclusions were drawn as a result of the whole study.We expect our work will help expand this enabling technology to better facilitate the enhancement of heavy oil recovery and maintain solid well integrity during the heavy oil production.Key words: Solid expandable tubular; Heavy oil recovery; Chin

    Interleukin-10 Inhibits Bone Resorption: A Potential Therapeutic Strategy in Periodontitis and Other Bone Loss Diseases

    Get PDF
    Periodontitis and other bone loss diseases, decreasing bone volume and strength, have a significant impact on millions of people with the risk of tooth loss and bone fracture. The integrity and strength of bone are maintained through the balance between bone resorption and bone formation by osteoclasts and osteoblasts, respectively, so the loss of bone results from the disruption of such balance due to increased resorption or/and decreased formation of bone. The goal of therapies for diseases of bone loss is to reduce bone loss, improve bone formation, and then keep healthy bone density. Current therapies have mostly relied on longterm medication, exercise, anti-inflammatory therapies, and changing of the life style. However there are some limitations for some patients in the effective treatments for bone loss diseases because of the complexity of bone loss. Interleukin-10 (IL-10) is a potent anti-inflammatory cytokine, and recent studies have indicated that IL-10 can contribute to the maintenance of bone mass through inhibition of osteoclastic bone resorption and regulation of osteoblastic bone formation. This paper will provide a brief overview of the role of IL-10 in bone loss diseases and discuss the possibility of IL-10 adoption in therapy of bone loss diseases therapy

    Evaluation of the efficacy and safety of intravenous remdesivir in adult patients with severe COVID-19: study protocol for a phase 3 randomized, double-blind, placebo-controlled, multicentre trial.

    Get PDF
    BACKGROUND: Coronavirus disease 2019 (COVID-19), caused by a novel corinavirus (later named SARS-CoV-2 virus), was fistly reported in Wuhan, Hubei Province, China towards the end of 2019. Large-scale spread within China and internationally led the World Health Organization to declare a Public Health Emergency of International Concern on 30th January 2020. The clinical manifestations of COVID-19 virus infection include asymptomatic infection, mild upper respiratory symptoms, severe viral pneumonia with respiratory failure, and even death. There are no antivirals of proven clinical efficacy in coronavirus infections. Remdesivir (GS-5734), a nucleoside analogue, has inhibitory effects on animal and human highly pathogenic coronaviruses, including MERS-CoV and SARS-CoV, in in vitro and in vivo experiments. It is also inhibitory against the COVID-19 virus in vitro. The aim of this study is to assess the efficacy and safety of remdesivir in adult patients with severe COVID-19. METHODS: The protocol is prepared in accordance with the SPIRIT (Standard Protocol Items: Recommendations for Interventional Trials) guidelines. This is a phase 3, randomized, double-blind, placebo-controlled, multicentre trial. Adults (≥ 18 years) with laboratory-confirmed COVID-19 virus infection, severe pneumonia signs or symptoms, and radiologically confirmed severe pneumonia are randomly assigned in a 2:1 ratio to intravenously administered remdesivir or placebo for 10 days. The primary endpoint is time to clinical improvement (censored at day 28), defined as the time (in days) from randomization of study treatment (remdesivir or placebo) until a decline of two categories on a six-category ordinal scale of clinical status (1 = discharged; 6 = death) or live discharge from hospital. One interim analysis for efficacy and futility will be conducted once half of the total number of events required has been observed. DISCUSSION: This is the first randomized, placebo-controlled trial in COVID-19. Enrolment began in sites in Wuhan, Hubei Province, China on 6th February 2020. TRIAL REGISTRATION: ClinicalTrials.gov: NCT04257656. Registered on 6 February 2020

    Association of inpatient use of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19

    Get PDF
    Rationale: Use of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) is a major concern for clinicians treating coronavirus disease 2019 (COVID-19) in patients with hypertension. Objective: To determine the association between in-hospital use of ACEI/ARB and all-cause mortality in COVID-19 patients with hypertension. Methods and Results: This retrospective, multi-center study included 1128 adult patients with hypertension diagnosed with COVID-19, including 188 taking ACEI/ARB (ACEI/ARB group; median age 64 [IQR 55-68] years; 53.2% men) and 940 without using ACEI/ARB (non-ACEI/ARB group; median age 64 [IQR 57-69]; 53.5% men), who were admitted to nine hospitals in Hubei Province, China from December 31, 2019 to February 20, 2020. Unadjusted mortality rate was lower in the ACEI/ARB group versus the non-ACEI/ARB group (3.7% vs. 9.8%; P = 0.01). In mixed-effect Cox model treating site as a random effect, after adjusting for age, gender, comorbidities, and in-hospital medications, the detected risk for all-cause mortality was lower in the ACEI/ARB group versus the non-ACEI/ARB group (adjusted HR, 0.42; 95% CI, 0.19-0.92; P =0.03). In a propensity score-matched analysis followed by adjusting imbalanced variables in mixed-effect Cox model, the results consistently demonstrated lower risk of COVID-19 mortality in patients who received ACEI/ARB versus those who did not receive ACEI/ARB (adjusted HR, 0.37; 95% CI, 0.15-0.89; P = 0.03). Further subgroup propensity score-matched analysis indicated that, compared to use of other antihypertensive drugs, ACEI/ARB was also associated with decreased mortality (adjusted HR, 0.30; 95%CI, 0.12-0.70; P = 0.01) in COVID-19 patients with hypertension. Conclusions: Among hospitalized COVID-19 patients with hypertension, inpatient use of ACEI/ARB was associated with lower risk of all-cause mortality compared with ACEI/ARB non-users. While study interpretation needs to consider the potential for residual confounders, it is unlikely that in-hospital use of ACEI/ARB was associated with an increased mortality risk

    Antigen-primed CD4^+CD25^+ Regulatory T Cells Prevent Skin Graft Rejection : in vitro and in vivo studies

    Get PDF
    原著論文Original PaperIn the present studies, we examined the role of regulatory T cells in developing strategies to achieve skin graft-specific tolerance and explored the immune characteristic of Treg cells and the main mechanisms through which inducing transplantation tolerance. The 5×10^4 Treg could inhibit the MLR obviously, and the effect of the Treg to the MLR is dose dependent. The suppression rate of Treg to response T cell from the donor was higher than control group that came from the non-donor, indicating that the suppression of Treg to response T cell was antigen specific. SR of Treg in co-culture was greater than that in separate culture, inferring that CD4^+CD25^+ Treg cells exerted their suppressive effects on effector T cells through cell to cell contact mechanism and cytokines secretion mechanism. In the group 1×10^5 Treg injected, the mean survive time of skin grafts from C57BL/6 mice was obviously longer than the control group. These data suggest that antigen-primed CD^4+CD25^+Treg are effective therapeutic tool to prevent skin allograft rejection

    Cross-Domain Identity Authentication Protocol of Consortium Blockchain Based on Face Recognition

    No full text
    A consortium system can leverage information to improve workflows, accountability, and transparency through setting up a backbone for these cross-company and cross-discipline solutions, which make it become a hot spot of market application. Users of a consortium system may register and log in different target domains to get the access authentications, so how to access resources in different domains efficiently to avoid the trust-island problem is a big challenge. Cross-domain authentication is a kind of technology that breaks trust islands and enables users to access resources and services in different domains with the same credentials, which reduces service costs for all parties. Aiming at the problems of traditional cross-domain authentication, such as complex certificate management, low authentication efficiency, and being unable to prevent the attack users’ accounts, a cross-domain authentication protocol based on face recognition is proposed in this paper. The protocol makes use of the decentralized and distributed characteristics of the consortium chain to ensure the reliable transmission of data between participants without trust relationships, and achieves biometric authentication to further solve the problem of account attack by applying a deep-learning face-recognition model. An asymmetric encryption algorithm is used to encrypt and store the face feature codes on the chain to ensure the privacy of the user’s face features. Finally, through security analysis, it is proved that the proposed protocol can effectively prevent a man-in-the-middle attack, a replay attack, an account attack, an internal attack, and other attacks, and mutual security authentication between different domains can be realized with the protocol

    Cross-Domain Identity Authentication Protocol of Consortium Blockchain Based on Face Recognition

    No full text
    A consortium system can leverage information to improve workflows, accountability, and transparency through setting up a backbone for these cross-company and cross-discipline solutions, which make it become a hot spot of market application. Users of a consortium system may register and log in different target domains to get the access authentications, so how to access resources in different domains efficiently to avoid the trust-island problem is a big challenge. Cross-domain authentication is a kind of technology that breaks trust islands and enables users to access resources and services in different domains with the same credentials, which reduces service costs for all parties. Aiming at the problems of traditional cross-domain authentication, such as complex certificate management, low authentication efficiency, and being unable to prevent the attack users’ accounts, a cross-domain authentication protocol based on face recognition is proposed in this paper. The protocol makes use of the decentralized and distributed characteristics of the consortium chain to ensure the reliable transmission of data between participants without trust relationships, and achieves biometric authentication to further solve the problem of account attack by applying a deep-learning face-recognition model. An asymmetric encryption algorithm is used to encrypt and store the face feature codes on the chain to ensure the privacy of the user’s face features. Finally, through security analysis, it is proved that the proposed protocol can effectively prevent a man-in-the-middle attack, a replay attack, an account attack, an internal attack, and other attacks, and mutual security authentication between different domains can be realized with the protocol
    corecore