45 research outputs found

    The release of toxic oligomers from α-synuclein fibrils induces dysfunction in neuronal cells.

    Get PDF
    The self-assembly of α-synuclein (αS) into intraneuronal inclusion bodies is a key characteristic of Parkinson's disease. To define the nature of the species giving rise to neuronal damage, we have investigated the mechanism of action of the main αS populations that have been observed to form progressively during fibril growth. The αS fibrils release soluble prefibrillar oligomeric species with cross-β structure and solvent-exposed hydrophobic clusters. αS prefibrillar oligomers are efficient in crossing and permeabilize neuronal membranes, causing cellular insults. Short fibrils are more neurotoxic than long fibrils due to the higher proportion of fibrillar ends, resulting in a rapid release of oligomers. The kinetics of released αS oligomers match the observed kinetics of toxicity in cellular systems. In addition to previous evidence that αS fibrils can spread in different brain areas, our in vitro results reveal that αS fibrils can also release oligomeric species responsible for an immediate dysfunction of the neurons in the vicinity of these species

    Alpha-Synuclein Oligomers Interact with Metal Ions to Induce Oxidative Stress and Neuronal Death in Parkinson's Disease

    Get PDF
    Protein aggregation and oxidative stress are both key pathogenic processes in Parkinson's disease, although the mechanism by which misfolded proteins induce oxidative stress and neuronal death remains unknown. In this study, we describe how aggregation of alpha-synuclein (α-S) from its monomeric form to its soluble oligomeric state results in aberrant free radical production and neuronal toxicity

    Amyloid-β and α-Synuclein Decrease the Level of Metal-Catalyzed Reactive Oxygen Species by Radical Scavenging and Redox Silencing.

    Get PDF
    The formation of reactive oxygen species (ROS) is linked to the pathogenesis of neurodegenerative diseases. Here we have investigated the effect of soluble and aggregated amyloid-β (Aβ) and α-synuclein (αS), associated with Alzheimer's and Parkinson's diseases, respectively, on the Cu(2+)-catalyzed formation of ROS in vitro in the presence of a biological reductant. We find that the levels of ROS, and the rate by which ROS is generated, are significantly reduced when Cu(2+) is bound to Aβ or αS, particularly when they are in their oligomeric or fibrillar forms. This effect is attributed to a combination of radical scavenging and redox silencing mechanisms. Our findings suggest that the increase in ROS associated with the accumulation of aggregated Aβ or αS does not result from a particularly ROS-active form of these peptides, but rather from either a local increase of Cu(2+) and other ROS-active metal ions in the aggregates or as a downstream consequence of the formation of the pathological amyloid structures.This work was supported by the Villum Foundation (J.T.P., L.H.), the Lundbeck Foundation (J.T.P., K.T.), the Agency for Science, Technology and Research, Singapore (S.W.C.), The Wellcome Trust (C.M.D.) and the Spanish Ministry of Economy and Competitiveness through the Ramon y Cajal ́ program (N.C.).This is the final version of the article. It first appeared from the American Chemical Society via http://dx.doi.org/10.1021/jacs.5b1357

    On the Relationship Between the Pseudo- and Superconducting Gaps: Effects of Residual Pairing Correlations Below Tc

    Full text link
    The existence of a normal state spectral gap in underdoped cuprates raises important questions about the associated superconducting phase. For example, how does this pseudogap evolve into its below Tc counterpart? In this paper we characterize this unusual superconductor by investigating the nature of the ``residual'' pseudogap below Tc and, find that it leads to an important distinction between the superconducting excitation gap and order parameter. Our approach is based on a conserving diagrammatic BCS Bose-Einstein crossover theory which yields the precise BCS result in weak coupling at any T<Tc and reproduces Leggett's results in the T=0 limit. We explore the resulting experimental implications.Comment: REVTeX, 4 pages, 1 EPS figure (included

    Single-Molecule Imaging of Individual Amyloid Protein Aggregates in Human Biofluids.

    Get PDF
    The misfolding and aggregation of proteins into amyloid fibrils characterizes many neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. We report here a method, termed SAVE (single aggregate visualization by enhancement) imaging, for the ultrasensitive detection of individual amyloid fibrils and oligomers using single-molecule fluorescence microscopy. We demonstrate that this method is able to detect the presence of amyloid aggregates of α-synuclein, tau, and amyloid-β. In addition, we show that aggregates can also be identified in human cerebrospinal fluid (CSF). Significantly, we see a twofold increase in the average aggregate concentration in CSF from Parkinson's disease patients compared to age-matched controls. Taken together, we conclude that this method provides an opportunity to characterize the structural nature of amyloid aggregates in a key biofluid, and therefore has the potential to study disease progression in both animal models and humans to enhance our understanding of neurodegenerative disorders.This research study was funded in part by the Wellcome Trust/MRC Joint Call in Neurodegeneration award (WT089698) to the UK Parkinson's Disease Consortium (UKPDC) and the NIHR rare disease translational research collaboration and supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre. We are also grateful to the Augustus Newman and Wolfson Foundations for their support. We thank the Royal Society for the University Research Fellowship of Dr. Steven F. Lee (UF120277).This is the final version of the article. It first appeared from ACS via http://dx.doi.org/10.1021/acschemneuro.5b00324

    Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers.

    Get PDF
    Oligomeric species populated during the aggregation process of α-synuclein have been linked to neuronal impairment in Parkinson's disease and related neurodegenerative disorders. By using solution and solid-state nuclear magnetic resonance techniques in conjunction with other structural methods, we identified the fundamental characteristics that enable toxic α-synuclein oligomers to perturb biological membranes and disrupt cellular function; these include a highly lipophilic element that promotes strong membrane interactions and a structured region that inserts into lipid bilayers and disrupts their integrity. In support of these conclusions, mutations that target the region that promotes strong membrane interactions by α-synuclein oligomers suppressed their toxicity in neuroblastoma cells and primary cortical neurons

    Defining α-synuclein species responsible for Parkinson's disease phenotypes in mice.

    Get PDF
    Parkinson's disease (PD) is a neurodegenerative disorder characterized by fibrillar neuronal inclusions composed of aggregated α-synuclein (α-syn). These inclusions are associated with behavioral and pathological PD phenotypes. One strategy for therapeutic interventions is to prevent the formation of these inclusions to halt disease progression. α-Synuclein exists in multiple structural forms, including disordered, nonamyloid oligomers, ordered amyloid oligomers, and fibrils. It is critical to understand which conformers contribute to specific PD phenotypes. Here, we utilized a mouse model to explore the pathological effects of stable β-amyloid-sheet oligomers compared with those of fibrillar α-synuclein. We biophysically characterized these species with transmission EM, atomic-force microscopy, CD spectroscopy, FTIR spectroscopy, analytical ultracentrifugation, and thioflavin T assays. We then injected these different α-synuclein forms into the mouse striatum to determine their ability to induce PD-related phenotypes. We found that β-sheet oligomers produce a small but significant loss of dopamine neurons in the substantia nigra pars compacta (SNc). Injection of small β-sheet fibril fragments, however, produced the most robust phenotypes, including reduction of striatal dopamine terminals, SNc loss of dopamine neurons, and motor-behavior defects. We conclude that although the β-sheet oligomers cause some toxicity, the potent effects of the short fibrillar fragments can be attributed to their ability to recruit monomeric α-synuclein and spread in vivo and hence contribute to the development of PD-like phenotypes. These results suggest that strategies to reduce the formation and propagation of β-sheet fibrillar species could be an important route for therapeutic intervention in PD and related disorders
    corecore