10,942 research outputs found
Measurement of Neutrino-Electron Scattering Cross-Section with a CsI(Tl) Scintillating Crystal Array at the Kuo-Sheng Nuclear Power Reactor
The elastic scattering cross-section was measured with
a CsI(Tl) scintillating crystal array having a total mass of 187kg. The
detector was exposed to an average reactor flux of
at the Kuo-Sheng Nuclear Power
Station. The experimental design, conceptual merits, detector hardware, data
analysis and background understanding of the experiment are presented. Using
29882/7369 kg-days of Reactor ON/OFF data, the Standard Model(SM) electroweak
interaction was probed at the squared 4-momentum transfer range of . The ratio of experimental to SM cross-sections
of was measured. Constraints on
the electroweak parameters were placed, corresponding to a weak
mixing angle measurement of \s2tw = 0.251 \pm 0.031({\it stat}) \pm
0.024({\it sys}) . Destructive interference in the SM \nuebar -e process was
verified. Bounds on anomalous neutrino electromagnetic properties were placed:
neutrino magnetic moment at \mu_{\nuebar}< 2.2 \times 10^{-10} \mu_{\rm B}
and the neutrino charge radius at -2.1 \times 10^{-32} ~{\rm cm^{2}} <
\nuchrad < 3.3 \times 10^{-32} ~{\rm cm^{2}}, both at 90% confidence level.Comment: 18 Figures, 7 Tables; published version as V2 with minor revision
from V
Studying X-ray burst nucleosynthesis in the laboratory
Type I X-ray bursts are the most common explosions in the Galaxy; however, the nucleosynthesis that occurs during the thermonuclear runaway and explosion is poorly understood. In this proceedings we discuss current experimental efforts and techniques that are being used to study X-ray burst nucleosynthesis in the laboratory. Specifically, radioactive ion beam techniques that have recently been developed have allowed the study of some of the most important (α, p) reactions in X-ray bursts for the first time. © Published under licence by IOP Publishing Ltd
Solitons in cavity-QED arrays containing interacting qubits
We reveal the existence of polariton soliton solutions in the array of weakly
coupled optical cavities, each containing an ensemble of interacting qubits. An
effective complex Ginzburg-Landau equation is derived in the continuum limit
taking into account the effects of cavity field dissipation and qubit
dephasing. We have shown that an enhancement of the induced nonlinearity can be
achieved by two order of the magnitude with a negative interaction strength
which implies a large negative qubit-field detuning as well. Bright solitons
are found to be supported under perturbations only in the upper (optical)
branch of polaritons, for which the corresponding group velocity is controlled
by tuning the interacting strength. With the help of perturbation theory for
solitons, we also demonstrate that the group velocity of these polariton
solitons is suppressed by the diffusion process
Observation of electron-antineutrino disappearance at Daya Bay
The Daya Bay Reactor Neutrino Experiment has measured a non-zero value for
the neutrino mixing angle with a significance of 5.2 standard
deviations. Antineutrinos from six 2.9 GW reactors were detected in
six antineutrino detectors deployed in two near (flux-weighted baseline 470 m
and 576 m) and one far (1648 m) underground experimental halls. With a 43,000
ton-GW_{\rm th}-day livetime exposure in 55 days, 10416 (80376) electron
antineutrino candidates were detected at the far hall (near halls). The ratio
of the observed to expected number of antineutrinos at the far hall is
. A rate-only analysis
finds in a
three-neutrino framework.Comment: 5 figures. Version to appear in Phys. Rev. Let
Pseudo-single crystal electrochemistry on polycrystalline electrodes : visualizing activity at grains and grain boundaries on platinum for the Fe2+/Fe3+ redox reaction
The influence of electrode surface structure on electrochemical reaction rates and mechanisms is a major theme in electrochemical research, especially as electrodes with inherent structural heterogeneities are used ubiquitously. Yet, probing local electrochemistry and surface structure at complex surfaces is challenging. In this paper, high spatial resolution scanning electrochemical cell microscopy (SECCM) complemented with electron backscatter diffraction (EBSD) is demonstrated as a means of performing âpseudo-single-crystalâ electrochemical measurements at individual grains of a polycrystalline platinum electrode, while also allowing grain boundaries to be probed. Using the Fe2+/3+ couple as an illustrative case, a strong correlation is found between local surface structure and electrochemical activity. Variations in electrochemical activity for individual high index grains, visualized in a weakly adsorbing perchlorate medium, show that there is higher activity on grains with a significant (101) orientation contribution, compared to those with (001) and (111) contribution, consistent with findings on single-crystal electrodes. Interestingly, for Fe2+ oxidation in a sulfate medium a different pattern of activity emerges. Here, SECCM reveals only minor variations in activity between individual grains, again consistent with single-crystal studies, with a greatly enhanced activity at grain boundaries. This suggests that these sites may contribute significantly to the overall electrochemical behavior measured on the macroscale
A side-by-side comparison of Daya Bay antineutrino detectors
The Daya Bay Reactor Neutrino Experiment is designed to determine precisely
the neutrino mixing angle with a sensitivity better than 0.01 in
the parameter sin at the 90% confidence level. To achieve this
goal, the collaboration will build eight functionally identical antineutrino
detectors. The first two detectors have been constructed, installed and
commissioned in Experimental Hall 1, with steady data-taking beginning
September 23, 2011. A comparison of the data collected over the subsequent
three months indicates that the detectors are functionally identical, and that
detector-related systematic uncertainties exceed requirements.Comment: 24 pages, 36 figure
A new view of electrochemistry at highly oriented pyrolytic graphite
Major new insights on electrochemical processes at graphite electrodes are reported, following extensive investigations of two of the most studied redox couples, Fe(CN)64â/3â and Ru(NH3)63+/2+. Experiments have been carried out on five different grades of highly oriented pyrolytic graphite (HOPG) that vary in step-edge height and surface coverage. Significantly, the same electrochemical characteristic is observed on all surfaces, independent of surface quality: initial cyclic voltammetry (CV) is close to reversible on freshly cleaved surfaces (>400 measurements for Fe(CN)64â/3â and >100 for Ru(NH3)63+/2+), in marked contrast to previous studies that have found very slow electron transfer (ET) kinetics, with an interpretation that ET only occurs at step edges. Significantly, high spatial resolution electrochemical imaging with scanning electrochemical cell microscopy, on the highest quality mechanically cleaved HOPG, demonstrates definitively that the pristine basal surface supports fast ET, and that ET is not confined to step edges. However, the history of the HOPG surface strongly influences the electrochemical behavior. Thus, Fe(CN)64â/3â shows markedly diminished ET kinetics with either extended exposure of the HOPG surface to the ambient environment or repeated CV measurements. In situ atomic force microscopy (AFM) reveals that the deterioration in apparent ET kinetics is coupled with the deposition of material on the HOPG electrode, while conducting-AFM highlights that, after cleaving, the local surface conductivity of HOPG deteriorates significantly with time. These observations and new insights are not only important for graphite, but have significant implications for electrochemistry at related carbon materials such as graphene and carbon nanotubes
- âŠ