4,755 research outputs found

    An STL-based Formulation of Resilience in Cyber-Physical Systems

    Get PDF
    Resiliency is the ability to quickly recover from a violation and avoid future violations for as long as possible. Such a property is of fundamental importance for Cyber-Physical Systems (CPS), and yet, to date, there is no widely agreed-upon formal treatment of CPS resiliency. We present an STL-based framework for reasoning about resiliency in CPS in which resiliency has a syntactic characterization in the form of an STL-based Resiliency Specification (SRS). Given an arbitrary STL formula φ\varphi, time bounds α\alpha and β\beta, the SRS of φ\varphi, Rα,β(φ)R_{\alpha,\beta}(\varphi), is the STL formula ¬φU[0,α]G[0,β)φ\neg\varphi\mathbf{U}_{[0,\alpha]}\mathbf{G}_{[0,\beta)}\varphi, specifying that recovery from a violation of φ\varphi occur within time α\alpha (recoverability), and subsequently that φ\varphi be maintained for duration β\beta (durability). These RR-expressions, which are atoms in our SRS logic, can be combined using STL operators, allowing one to express composite resiliency specifications, e.g., multiple SRSs must hold simultaneously, or the system must eventually be resilient. We define a quantitative semantics for SRSs in the form of a Resilience Satisfaction Value (ReSV) function rr and prove its soundness and completeness w.r.t. STL's Boolean semantics. The rr-value for Rα,β(φ)R_{\alpha,\beta}(\varphi) atoms is a singleton set containing a pair quantifying recoverability and durability. The rr-value for a composite SRS formula results in a set of non-dominated recoverability-durability pairs, given that the ReSVs of subformulas might not be directly comparable (e.g., one subformula has superior durability but worse recoverability than another). To the best of our knowledge, this is the first multi-dimensional quantitative semantics for an STL-based logic. Two case studies demonstrate the practical utility of our approach.Comment: 16 pages excluding references and appendix (23 pages in total), 6 figure

    An STL-based Approach to Resilient Control for Cyber-Physical Systems

    Full text link
    We present ResilienC, a framework for resilient control of Cyber-Physical Systems subject to STL-based requirements. ResilienC utilizes a recently developed formalism for specifying CPS resiliency in terms of sets of (rec,dur)(\mathit{rec},\mathit{dur}) real-valued pairs, where rec\mathit{rec} represents the system's capability to rapidly recover from a property violation (recoverability), and dur\mathit{dur} is reflective of its ability to avoid violations post-recovery (durability). We define the resilient STL control problem as one of multi-objective optimization, where the recoverability and durability of the desired STL specification are maximized. When neither objective is prioritized over the other, the solution to the problem is a set of Pareto-optimal system trajectories. We present a precise solution method to the resilient STL control problem using a mixed-integer linear programming encoding and an a posteriori ϵ\epsilon-constraint approach for efficiently retrieving the complete set of optimally resilient solutions. In ResilienC, at each time-step, the optimal control action selected from the set of Pareto-optimal solutions by a Decision Maker strategy realizes a form of Model Predictive Control. We demonstrate the practical utility of the ResilienC framework on two significant case studies: autonomous vehicle lane keeping and deadline-driven, multi-region package delivery.Comment: 11 pages, 6 figure

    Data-Driven Robust Control for a Closed-Loop Artificial Pancreas

    Get PDF

    Model driven testing based on test history

    Get PDF
    We consider software systems consisting of a set of components running as a sequential process. We model such software systems as a special class of transition systems. The difference with existing approaches is that we propose a test procedure based on the structure of the model and the prior test history that can be used for exhaustive testing in an efficient way. On top of that we provide a statistical stopping rule, that is independent of the underlying way of walking through the system, which allows us to stop earlier with a certain statistical reliability.</p

    Cardiometabolic risk factors and mental health status among truck drivers : a systematic review

    Get PDF
    The first author (AG) has received funding for their PhD Studentship from the Colt Foundation. The Colt Foundation had no role in study design; election, synthesis and interpretation of data; writing of the report; or the decision to submit the manuscript for publication. SC and JAK are in receipt of funding from the NIHR Public Health Research Programme (reference: NIHR PHR 15/190/42) for the evaluation of a multi-component health behaviour intervention in truck drivers. They are also supported by the NIHR Leicester Biomedical Research Centre – Lifestyle theme. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.Peer reviewedPublisher PD

    Multidimensional Quasi-Monte Carlo Malliavin Greeks

    Get PDF
    We investigate the use of Malliavin calculus in order to calculate the Greeks of multidimensional complex path-dependent options by simulation. For this purpose, we extend the formulas employed by Montero and Kohatsu-Higa to the multidimensional case. The multidimensional setting shows the convenience of the Malliavin Calculus approach over different techniques that have been previously proposed. Indeed, these techniques may be computationally expensive and do not provide flexibility for variance reduction. In contrast, the Malliavin approach exhibits a higher flexibility by providing a class of functions that return the same expected value (the Greek) with different accuracies. This versatility for variance reduction is not possible without the use of the generalized integral by part formula of Malliavin Calculus. In the multidimensional context, we find convenient formulas that permit to improve the localization technique, introduced in Fourni\'e et al and reduce both the computational cost and the variance. Moreover, we show that the parameters employed for variance reduction can be obtained \textit{on the flight} in the simulation. We illustrate the efficiency of the proposed procedures, coupled with the enhanced version of Quasi-Monte Carlo simulations as discussed in Sabino, for the numerical estimation of the Deltas of call, digital Asian-style and Exotic basket options with a fixed and a floating strike price in a multidimensional Black-Scholes market.Comment: 22 pages, 6 figure

    Symbolic dynamics for the NN-centre problem at negative energies

    Full text link
    We consider the planar NN-centre problem, with homogeneous potentials of degree -\a<0, \a \in [1,2). We prove the existence of infinitely many collisions-free periodic solutions with negative and small energy, for any distribution of the centres inside a compact set. The proof is based upon topological, variational and geometric arguments. The existence result allows to characterize the associated dynamical system with a symbolic dynamics, where the symbols are the partitions of the NN centres in two non-empty sets

    Comment on ``Spin Polarization and Magnetic Circular Dichroism in Photoemission from the 2p Core Level of Ferromagnetic Ni''

    Full text link
    Although the Ni_4 cluster includes more information regarding the Ni band structure with respect to the Anderson impurity model, it also favors very peculiar ground states which are incompatible with a coherent picture of all dichroism experiments.Comment: 1 page, RevTeX, 1 epsf figur

    Large non-Gaussianities in the Effective Field Theory Approach to Single-Field Inflation: the Bispectrum

    Get PDF
    The methods of effective field theory are used to study generic theories of inflation with a single inflaton field and to perform a general analysis of the associated non-Gaussianities. We investigate the amplitudes and shapes of the various generic three-point correlators, the bispectra, which may be generated by different classes of single-field inflationary models. Besides the well-known results for the DBI-like models and the ghost inflationary theories, we point out that curvature-related interactions may give rise to large non-Gaussianities in the form of bispectra characterized by a flat shape which, quite interestingly, is independently produced by several interaction terms. In a subsequent work, we will perform a similar general analysis for the non-Gaussianities generated by the generic four-point correlator, the trispectrum.Comment: Version matching the one published in JCAP, 2 typos fixed, references added. 30 pages, 20 figure
    corecore