

Model driven testing based on test history

Citation for published version (APA):
Corro Ramos, I., Di Bucchianico, A., Hakobyan, L., & Hee, van, K. M. (2007). Model driven testing based on test
history. (Computer science reports; Vol. 0725). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/0652f058-400c-4e0f-b8ec-55a9a17e0c33

Model Driven Testing Based on Test History

Isaac Corro Ramos, Alessandro Di Bucchianico, Lusine Hakobyan, and
Kees van Hee

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{i.corro.ramos, a.d.bucchianico, l.hakobyan, k.m.v.hee}@tue.nl

Abstract. We consider software systems consisting of a single compo-
nent running one sequential process only. We model such software sys-
tems as a special class of transition systems. We propose an exhaus-
tive test procedure that uses the knowledge of system structure and the
prior test history. Since exhaustive testing is not always feasible, we also
present a statistical release procedure based on the characteristics of the
system and the test history.
Keywords: transition systems; Petri nets; stopping criterion; software
testing.

1 Introduction

In this paper we consider a simplified model of software systems consisting of
a single component running one sequential process only, leaving the problem of
considering a more realistic model with several components for future works. We
model software systems as labelled transition systems (LTS). Atomic software
operations are modelled as transitions that either have a correct or an erroneous
behaviour. Therefore, an error is a symbolic labeling of a transition that can be
discovered only when the transition is fired. Using labelled transition systems, in
particular finite state machines, for testing has a long history. Some early papers
in this direction are [4], [7] and [8]. A similar model, event sequence graphs, is
used in [2]. For recent overviews of transition based testing, we refer to [1] and
[3]. Since exhaustive testing is not always feasible in practice, our strategy can
also be used as a statistical release procedure, based on a statistical stopping
criterion. In spite of the extensive literature on statistical stopping criteria for
black-box testing, there do not seem to be similar criteria for white-box test-
ing (in which the structure of the software system is taken into account). Our
term “statistical procedure” should not be confused with the common statistical
testing techniques (see e.g., [9]) used to generate test cases using a probability
distribution. Our release procedure is based on the test history and focuses on
the probability of having a certain number of remaining errors when we decide
to stop testing. The difference with existing approaches (cf. [1]) is that we give
an efficient strategy for exhaustive testing, i.e., visiting all transitions, combined
with a statistical procedure that allows to stop earlier. The selection of the next

transition to be tested is based on a randomized choice. So we provide a possibly
exhaustive random testing strategy.

The rest of the paper is organized as follows. An example to illustrate a real
application of our procedure is presented in Section 2. In Section 3 we introduce
the test framework. A detailed description of the exhaustive test strategy is
explained in Section 4. The statistical release procedure is described in Section 5.
Finally, in Section 6 we discuss the results obtained so far and future work.

2 Example of modelling software as a workflow transition
system

Before formalizing our test framework in Section 3, we illustrate with the follow-
ing example how we map the abstract model to a real application. This example
is taken from the web site www.Petriweb.org. Petriweb is a web application for
maintaining repositories of Petri nets (a detailed description is given in [6]). We
consider web applications as labelled transition systems (a formal definition will
be given in Section 3). The web pages are the states and the links or buttons
on the pages are the transitions. Pressing a button activates the code that per-
forms an atomic operation (modelled as a transition) which results in moving to
another page (modelled as a state). Note that the result can also be new data
in a page. An error is considered as a wrong functioning link or button.

We consider a use case scenario from the user’s perspective. There are several
types of users such as administrator, registered user or unregistered user. Each
of them can use Petriweb for different purposes. We consider the use case for
a logged in user who wants to add a new net to the repository. Figure 1 shows
the transition system of the “adding a new net” use case where the initial state
is “logged in user screen” and the final state is “finish use case”. Branching

logged in
user screen

add a new
net

add net
screen

browse
choose file

window

choose wrong
file

choose right file

error page close the
window

finish use
case

successful
upload

define
properties

move to
recycle bin

new window
within the net

another use
case

close the
window

view net
animate with firing

sequences

animation results

close the
window

Fig. 1. Transition system of “adding a new net” use case.

points can be regarded as the options the user can choose. An execution of a
path from the initial state is called run. If a run is successful, i.e., we reach the
final state, then one of the user’s options can be skipped for the next run, as
we shall explain in Section 4. There are several approaches to modelling and

2

testing web applications using finite state machines (see [1] for an overview). In
[1], the model is similar to ours, however they consider more components (called
clusters by them) for which they introduced a hierarchy of finite state machines.
They consider some standard coverage strategies for exhaustive testing, but no
statistically based stopping rule. We define a statistical release procedure based
on the graphical structure of the model to stop testing when the probability
of having a certain number of remaining errors reaches a desired bound (see
Section 5 for details). For example, from the state “another use case” a new use
case can start which can be seen as detailed elaboration of “define properties”
actions the user can perform. In general we also have different use cases based
on the user’s type. Therefore, if we model all possible use cases, our transition
system will be expanded. If the application is modelled using a large number of
states and transitions, exhaustive testing (visit all the transitions at least once)
may not be feasible anymore.

3 Modelling framework for testing

In this section we introduce the basic definitions and concepts to be used in
our test procedure. As we mentioned in the introduction, we consider software
systems consisting of one component running one sequential process. We use
labelled transition systems, which can be seen as a subclass of Petri nets, to
model such processes.

Definition 1 (Labelled transition system). A labelled transition system
(LTS) is a triple L = (S, T, R), where

1. S is a non-empty finite set whose elements are called states,
2. T is a non-empty finite set whose elements are called transitions,
3. R ⊆ S×T×S is a ternary relation such that for all t ∈ T there exist s, s′ ∈ S

such that (s, t, s′) ∈ R,
4. there is exactly one state i ∈ S (called the initial state) such that there is no

triple (s, t, i) ∈ R,
5. there is at least one state f such that there is no triple (f, t, s) ∈ R (such

states f are called final states),
6. for any state s ∈ S there is a sequence (s1, t1, s2, . . . , sn, tn, sn+1) such that

(sk, tk, sk+1) ∈ R for all 1 ≤ k ≤ n, s1 = i, and sn+1 = s, i.e., any state is
reachable from the initial one.

When we do not want to specify the name of a transition we say that there
is an arc from s to s′. Given an LTS, for all s ∈ S we define •s = {u ∈ S |
∃t ∈ T : (u, t, s) ∈ R} and s• = {v ∈ S | ∃t ∈ T : (s, t, v) ∈ R} as the
preset and the postset of s, respectively. If (s, t, s′) ∈ R, we also write s

t→ s′.
A path in an LTS is either the empty sequence, denoted by ε, or a sequence
p = (s1, t1, . . . , sn, tn, sn+1) such that for all 1 ≤ k ≤ n, (sk, tk, sk+1) ∈ R. A
subpath of a path p is a subsequence p′ of p starting and ending with a state.
A path is said to be linear if for all sk, 1 < k < n + 1, it follows that | • sk| =

3

|sk •| = 1. We say that a path p = (s1, t1, . . . , sn, tn, sn+1) is a cycle if s1 = sn+1.
A firing sequence is the projection of a path p onto the set of transitions T , i.e.,
(t1, . . . , tn) is a firing sequence if and only if there exist s1, . . . , sn+1 ∈ S such
that s1

t1→ s2
t2→ s3 . . .

tn→ sn+1. An LTS is acyclic if it does not contain cycles.
An LTS is said to be a one-path LTS if |s • | = 1 for all non-final states s.

The next step is to present the new concepts needed for our test purposes.
First we define what an error is. The main assumption is to model atomic soft-
ware operations as transitions that either behave correctly or have an error. We
define an error as a symbolic marking or labelling of a transition.

Definition 2 (Error). A symbolic marking of transitions in an LTS is a func-
tion M : T → {0, 1} such that

M(t) =

1, if t is error marked

0, if t is error free

The set D = {t | M(t) = 1} is called error set.

This function is unknown to the tester and it is the result of a random process
as it will be described in Section 5. When an error is repaired, the marking of
the transition at hand is changed from 1 to 0.

In our model we discover an error if and only if we visit an error-marked
transition. As soon as we discover an error, it is repaired before we continue
testing. The error finding process consists of executing a path from the initial
state to either a state with empty postset, to a repeated state or to an error
marked transition. We refer to this path as run.

Definition 3 (Run). Let L = (S, T, R) be an LTS with a unique initial state i.
A run σ in L is a path (i, t1, . . . , sn, tn, sn+1). A run is said to be successful if
sk 6= sj, for all 1 ≤ k ≤ n, 1 ≤ j ≤ n, M(tk) = 0, for all 1 ≤ k ≤ n, and either
|sn+1 • | = ∅ or there exists exactly one 1 ≤ k ≤ n such that sk = sn+1. A run
is said to be failure if sk 6= sj, for all 1 ≤ k ≤ n, 1 ≤ j ≤ n, M(tk) = 0, for all
1 ≤ k < n, and M(tn) = 1. We denote by Σ the set of all runs of L.

We now define a special test procedure called walking function.

Definition 4 (Walking function). Let L = (S, T, R) be an LTS. A walking
function for L is a function w : T → [0, 1] such that

∑
t∈s•

w(t) = 1 for all non-final

states s. We denote by W the set of all walking functions.

Note that a walking function w can be regarded as a probability distribution on
the branching points of the LTS. Initially, all the transitions are weighted with
nonzero probabilities and therefore all the transitions are executable. When we
are in a state, we choose the next transition to be executed by a weighted random
drawing based on the walking function. After each successful run, the walking
function may be updated in order to produce a new function. This new walking
function assigns probability zero to some already executed transitions so that for

4

the next execution those transitions will not fire. Note that a zero probability
transition can also be considered as a non-existing transition. The update of the
walking function is done by the following procedure.

Definition 5 (Walking function update). Let L = (S, T,R) be an LTS. A
function U : W ×Σ →W such that if w(t) = 0 for some t ∈ T , then w′(t) = 0,
where U(w, σ) = w′, is called a Walking Function Update (WFU) function for
w.

So an update means that no transitions are added in most cases, but transitions
may get blocked. A detailed description of both walking function and WFU
function as well as a proof of exhaustiveness for the test procedure are given in
Section 4.

As we already mentioned in the introduction, exhaustive testing is not always
feasible in practice. Therefore we need to define a stopping criterion that allows
us to stop before we have visited all transitions.

Definition 6 (Stopping set). Let H = {0, 1}∗ be the set of all finite sequences
of 0 and 1. If ≺ denotes the proper prefix relation, a set A ⊂ H is a stopping
set if and only if

1. for all a, b ∈ A we have ¬(a ≺ b)
2. for all h ∈ H there exists a ∈ A such that h ≺ a ∨ a ≺ h

A procedure determining a stopping set is called stopping rule.

Note that the first condition in the previous definition states that when a se-
quence that stops the procedure is found, that sequence is not continued. The
second condition states that any sequence has a stopping moment either in the
past or possibly in the future. In Section 5 we define concrete stopping sets for
our testing procedure. Our test procedure consists basically of four steps: col-
lecting visited transitions during runs, counting the error marked transitions,
updating the LTS by using a walking function update and defining a stopping
rule.

4 Walking strategy

In this section we first describe a general walking function update and then a
more efficient update for a special subclass of LTS. After each successful run, we
want to increase the probability of visiting new transitions. For that reason, for
the next run we discard some already visited parts of the LTS, in such a way
that the reduced system remains an LTS. We show that after a finite number
of updates all the transitions are visited, so that the updating procedure is
exhaustive. At the end of this section we compare the two algorithms for acyclic
LTS.

5

4.1 Walking function update for labelled transition systems

First we give an informal description of a WFU function for LTS and successful
runs. Let L = (S, T, R) be an LTS with walking function w. If L is a one-path
LTS, then we stop after the first successful run. Suppose that L is not a one-
path LTS. Given a successful run σ = (i, t1, . . . , sn, tn, sn+1) we look for the last
state, say sk, in the sequence σ with at least two outgoing arcs. Since L is not
a one-path LTS such a state always exists. Note that sn+1 is either a state with
no outgoing arcs or a state that we encounter twice in σ. We update w to a
new walking function w′ by setting w′(tk) = 0. By setting w′(tk) = 0 we avoid
to run tk the next time we reach sk. We do the same for transitions after tk
until we reach a state with more than one incoming transition if any. The formal
description of the WFU function is given in Algorithm 1. We assume that our
system is not one-path. A test for this situation is trivial, and we should stop
immediately. An example of the application of the WFU function is described

Algorithm 1: WFU function for an LTS and a successful run
input : L = (S, T, R), σ = (i, t0, s1, t1, . . . , tn, sn+1)
output: w′ = U(w, σ)

Var w : T → [0, 1]1

Var s0 := i, tail
begin

tail := n; w′ := w2

while (tail ≥ 0) do
if (|stail • | ≤ 1) then3

tail := tail − 14

else5

w′(ttail) := 0, tail := −16

endif7

end8

tail := tail + 19

while (tail ≤ n ∧ | • stail| = 0) do
w′(ttail) := 0, tail := tail + 110

end11

end12

in Figure 2. Suppose that (s0, t0, s1, t1, s2, t2, s1) is a subpath of a successful run
σ in L. We update w by setting w′(t2) = 0 since s2 is the last state in the run
with more than one outgoing arcs. Note that this is equivalent to removing t2
from L.

4.2 Validity of walking function update

We now study the validity of the walking function update procedure. The next
result shows that the resulting system after updating w remains an LTS.

6

s0 s1t0 t1

t2

s2

Fig. 2. LTS with a cycle. We remove t2.

Definition 7 (Reduced system). Let L = (S, T, R) be an LTS with walking
update function U . Let w be a walking function w for L and σ be a successful
run. The reduced system L′ w.r.t. w′ = U(w, σ) is the triple (S′, T ′, R′) such
that T ′ = {t ∈ T | w′(t) > 0}, S′ = S \ {s ∈ S | •s ⊂ T̃ ∧ s• ⊂ T̃}, where
T̃ = {t ∈ T | w′(t) = 0}, and R′ = R ∩ (S′ × T ′ × S′).

Theorem 1. Let L = (S, T, R) be an LTS an let U be the WFU function for L
as defined by Algorithm 1. If w is a walking function for L, then for any successful
run σ in L there exists at least one transition t in σ such that U (w, σ) (t) = 0.
Moreover, the reduced system L′ w.r.t. U and w remains an LTS and after a
finite number of updates we visit all transitions.

Proof. If L is a one-path LTS, then there is nothing to prove since after a suc-
cessful run we stop our procedure and we do not update w. Assume that L is not
one-path and denote by σ = (i, t0, s1, . . . , tn, sn+1) a successful run in L. Since
L is not a one-path LTS, there exists a state sk in σ, with 0 ≤ k ≤ n, such that
|sk • | > 1. According to Algorithm 1 we choose the last state in the sequence
σ with more than one outgoing arc. We can assume without loss of generality
that sk is such a state. We consider the path p = (sk, tk, sk+1, . . . , tn, sn+1).
Therefore, we update w by setting w′(tk) = 0. We now prove that the reduced
system, denoted by L′, remains an LTS. It suffices to verify that every state x
not in p is reachable from the initial one. Note that x is also a state in L′ and
there exists a path v from i to x in L. If p and v have no states in common,
then v is also a path in L′ and we are done. Now assume that p and v have at
least one state in common. Suppose first that |sn+1 • | = 0. Obviously x is not
reachable from sn+1 and since sk is the last state with two outgoing arcs in σ,
sk is the only common state of p and v. Therefore, v is a path from i to x via sk

but not via tk. Thus, v is also a path in L′. Suppose now that |sn+1 • | > 0, i.e.,
sn+1 is observed twice in σ. If sk is also in v, then two cases are possible. Either
v is a path from i to x via sk but not via tk, in which case v is also a path in L′,
or v is a path from i to x via tk which means (since sk is the last state in σ with
two outgoing arcs) that v passes through sn+1. Therefore, there exists a path v′

from i to x via sn+1 that is also a path in L′. Finally, if sk is not in v, then there
exists l with k + 1 ≤ l ≤ n + 1, such that (sl, tl, . . . , tn, sn+1) is a subsequence of
both p and v. In any case, sn+1 is also a state in v. Hence, there exists a path v′

in L′ from i to x via sn+1. For the last statement recall that we discard at least
one transition after a successful run. Failure runs may not reduce L, but since
the number of error marked transitions is finite, after a finite number of runs we
visit all the transitions and thus an exhaustive procedure is defined. 2

7

Note that σ must be a successful run, otherwise Theorem 1 is not true. This
condition is illustrated in Figure 3. Suppose that (s0, t0, s1, t1, s2) is a subpath
of a failure run σ in L. According to Algorithm 1, we would update the walking
function w by setting w′(t1) = 0. However, the reduced system is not an LTS
anymore because t2 would be unreachable and, in case of being error marked,
the corresponding error would never be discovered.

s0 s1t0 t1

t3

s2 t2 s3

s4

Fig. 3. Failure run in an LTS. The WFU function cannot be applied.

4.3 Walking function update for acyclic workflow transition systems

In this subsection we present a more efficient walking function update for a
special subclass of LTS. Since this subclass is in fact a special class of workflow
Petri nets, we call it Workflow Transitions Systems (WTS).

Definition 8 (Workflow Transition System). A WTS is an LTS with the
additional requirements that there is a unique final state f and that for every
state s 6= f there is a path from s to f .

We first give an informal description of the alternative walking function update.
Let W = (S, T,R) be an acyclic WTS with walking function w. Given a success-
ful run σ in W we look for the first state, say s, in σ with at least two outgoing
arcs. Since W is not a one-path WTS such a state always exists. Setting s as a
marker, called “head”, we move forward through σ. If the next state has exactly
one incoming and one outgoing arc, then we move to the following state. If we
reach a state, say s′, with at least two outgoing arcs but only one incoming, then
we set s′ as “head”. We continue the same procedure until we find a state, say
s̃, with at least two incoming arcs. Such a state always exists because there is
exactly one final state, there are no cycles and the final state can be reached
from any other state. We update w to a new walking function w′ by setting
w′(t′) = 0, where t′ is any transition in σ between s′ and s̃. Therefore, we avoid
to run again the sequence comprised between t′ and t̃ the next time we reach s′.
The formal description of this WFU function is given in Algorithm 2. An exam-
ple of the application of the WFU function is shown in Figure 4. Suppose that
(b, t0, s1, t1, s2, t2, e) is a subpath of a successful run σ in W . We update w by
setting w′(t0) = 0. Note that this is equivalent to removing t0 from W . Similarly,
in the situation illustrated in Figure 5, we update w by setting w′(t0) = 0 and
w′(t2) = 0. If in both cases (b, t3, s3, t4, e) was a subpath of σ, then we would
update w by setting w′(t3) = 0 and w′(t4) = 0. Note that the update procedure

8

Algorithm 2: WFU function for an acyclic WTS and a successful run
input : W = (S, T, R), σ = (i, t0, s1, t1, . . . , sn, tn, f)
output: w′ = U(w, σ)

Var w : T → [0, 1]1

Var s0 := i, sn+1 := f, head, current
begin

head := 0, current := 02

while (current ≤ (n + 1)) do
if (|scurrent • | > 1) then3

head := current4

endif5

if (| • scurrent| > 1) then6

w(thead) := 07

endif8

current := current + 19

end10

if (head = 0) then11

w(thead) := 012

endif13

for (x = head + 1 to current)14

w(tx) := 0

end15

is valid only for an acyclic WTS. Suppose that (b, t0, s1, . . . , s4, t4, b) is a cycle
as it is shown in Figure 6, and subpath of σ. According to Algorithm 2 we would
update w by setting w′(t0) = 0. However, the reduced system is not a WTS
anymore because t5 would be unreachable.

4.4 Validity of the walking function update for acyclic WTS

Similarly to the general case, we now study the validity of the procedure for an
acyclic WTS. Reduced WTS are defined in a similar way as in Definition 8.

Theorem 2. Let W = (S, T, R) be an acyclic WTS with WFU function U as
defined by Algorithm 2. If w is a walking function for W , then for a successful

bb t0 s1t0t0 t1 s2t1 t2 et3 s3 t4
Fig. 4. Acyclic WTS where s1 and s2 have only one outgoing arc. We remove t0.

9

bb t0 s1t0t0 t1 s2t1 t2 et3 s3 t4
Fig. 5. Acyclic WTS where s1 has only one outgoing arc and s2 has two outgoing arcs.
We remove t0 and t2.

bb

t0 s1t0t0 t1 s2t1 t2

s3

t4 s4 t3

t5

Fig. 6. Cyclic WTS. The WFU function cannot be applied.

run σ in W there exists at least one transition t in σ such that U (w, σ) (t) = 0.
Moreover, the reduced system W ′ w.r.t. U and w remains a WTS and after a
finite number of updates we visit all transitions.

Proof. If W is a one-path WTS, then there is nothing to prove since after a
successful run we stop our procedure and we do not update w. Assume that
W is not a one-path WTS and denote by σ = (i, t0, s1, . . . , tn, f) a successful
run in W . Since W is not a one-path WTS, there exists a state sk in σ, with
0 ≤ k ≤ n, such that |sk • | > 1. We can assume without loss of generality
that sk is the “head” marker in Algorithm 2 and sl, with k < l ≤ n, be the
first state in σ after sk with more than one incoming arc. We consider the path
p = (sk, tk, sk+1, . . . , tl−1, sl). Note that p is a linear subpath of σ. Therefore,
we update w by setting w′(tk) = . . . = w′(tl−1) = 0. We now prove that the
reduced system, denoted by W ′, remains a WTS. Since we do not introduce
new transitions, it is enough to verify the existence of paths to f . Consider an
arbitrary state x in W that is not in p. Therefore, x is also a state in W ′ and
there exists a path v from i to x and from x to f in W . If p is not a subpath of
v, then v is also a path in W ′ and we are done. Suppose now that p is a subpath
of v. Either p is a subpath from i to x or from x to f . Suppose that it is a
subpath from i to x. Since p is a linear path and passes via sl to x and | •sl| > 1,
there exists at least another path from i to sl such that p is not a subpath of it.
Assume now that p is a subpath from x to f . Since |sk • | > 1 there exists at
least another path from sk to f that p is not a subpath of it. Therefore, W ′ is a
WTS. The final statement follows as in the proof of Theorem 1. 2

10

4.5 Algorithm comparison

We now illustrate with a simple example the advantage of using Algorithm 2
for acyclic WTS. We have shown in Section 4.2 that Algorithm 1 is valid for
general LTS. Therefore, if we do not have any information about whether the
system is acyclic or not we apply Algorithm 1. However, if we know that the
system is an acyclic WTS it is more efficient to use Algorithm 2 since after a
successful run it reduces at least the same number of transitions as Algorithm 1.
This is depicted in Figure 7. Suppose the path σ = (i, t0, s1, t1, s2, t2, f) is a

s0 s1t0 t1

t3

s2 t2

t4

f

Fig. 7. Acyclic WTS. The transitions t1 and t2 are removed by Algorithm 2. Only t2
is removed by Algorithm 1.

successful run. According to Algorithm 1 we update the walking function w by
setting w′(t2) = 0, i.e., the system is reduced by one transition. Nevertheless, if
we apply Algorithm 2, then we update w by setting w′(t1) = 0 and w′(t2) = 0,
reducing thus the system by two transitions.

5 Statistical release procedure

In Section 4 we presented a procedure based on the structure of the net that
allows for exhaustive testing. When exhaustive testing is not feasible in practice,
statistical procedures must be considered. We present in this section a statisti-
cal release procedure that only makes use of the transitions visited during the
walking phase.

Let L = (S, T, R) be an LTS and write N = |T |. Denote by tj , 1 ≤ j ≤ N , the
elements of T . The error marking process can be modelled as a Bernoulli process
consisting of repeatedly performing independent identical Bernoulli trials. Our
Bernoulli trial consists of selecting without replacement a transition tj from
T and labeling it as an error with unknown probability θ. Denote by εj , 1 ≤
j ≤ N , the independent and identically distributed Bernoulli random variables
representing the output of the error marking process and let ej , 1 ≤ j ≤ N ,
be their realizations. Then, M(tj) = ej for all tj ∈ T , 1 ≤ j ≤ N , where M is
the error marking function in Definition 2. Define D =

∑N
j=1 εj as the random

variable representing the unknown number of error marked transitions in L. D
follows a binomial distribution with parameters N and θ. Suppose that the set of
visited transitions K ⊂ T is such that |K| = n ≤ N . This is equivalent to sample
(without replacement) n transitions from the set T . Formally, let Y1, . . . , Yn be
a random sample drawn without replacement from the set of labels {1, . . . , n}.

11

Therefore, tYl
, 1 ≤ l ≤ n, is a new visited transition. Let Xl be the output of tYl

,
i.e., we can define Xl = εYl

and thus, xl = eYl
= M(tYl

). Note that X1, . . . , Xn

are not independent, because Y1, . . . , Yn are sampled without replacement but
the distribution of the errors is independent of the sampling procedure. As soon
as we sample a new transition tYl

, the Bernoulli error marking experiment can
be executed for this transition and the output of this experiment is the same as
the one obtained executing the error marking experiment directly from T .

The next step is to develop a statistical release procedure that uses the
information collected during the test phase. We determine the probability of
having at most k remaining errors when we decide to stop testing. Thus, if we
fix k and a confidence level α (normally 0.05), our problem consists of visiting
the minimal number of transitions such that the probability of having at most
k remaining errors is greater than or equal to 1−α. We present two approaches
to this problem, one based on classical statistics and one based on Bayesian
statistics.

5.1 Classical approach

Denote by s =
∑n

l=1 xl the number of error marked transitions in the sam-
ple. Since D is binomially distributed with parameters N and θ, the maxi-
mum likelihood estimate of θ is given by θ̂ = s/n. Together with the point
estimate of θ we must also give a confidence interval where the true value
of θ is likely to be with 95% of probability. In the worst case scenario the
estimated value of θ is the upper bound of the confidence interval and it is

given by θu ≈ θ̂ + 1.96
√

θ̂(1− θ̂)/n. Therefore, we can define the stopping set
Aθu = {x ⊂ H | Pθu [s ≤ D ≤ s + k] ≥ 1− α}, where

Pθu [s ≤ D ≤ s + k] =
s+k∑

d=s

(
N

d

)
(θu)d(1− θu)N−d ≥ 1− α (1)

Note that Aθu satisfies Definition 6 since as n increases to N (and thus s in-
creases to d) the probability Pθu [s ≤ D ≤ s + k] will always tend to 1. Thus, the
stopping criterion will always be met. We will refer to the condition in Aθu as the
binomial rule. Note also that the value of k obtained in (1) can be considerably
bigger than the one obtained using θ̂ instead. This and the fact that nothing
can be said when s = 0, lead us to consider Bayesian procedures as a natural
alternative.

5.2 Bayesian approach

In order to exploit the information contained in Xl, 1 ≤ l ≤ n, we develop a
release procedure for white-box testing considering the error probability θ as a
random variable Θ with prior distribution function FΘ(θ) (see [5] for a similar
black-box test procedure). Denote by X = (X1, . . . , Xn) the output of the n

12

sampled transitions and let x = (x1, . . . , xn) be their realizations. In this case
we want to calculate the minimal value of n such that

P [s ≤ D ≤ s + k|X = x] =
s+k∑

d=s

P [D = d|X = x] ≥ 1− α (2)

Application of the Bayes rule and the law of total probability yields

P [D = d|X = x] =
P [X = x | D = d]

∫ 1

0

P [D = d|Θ = θ] fΘ (θ) dθ

∫ 1

0

P [X = x|Θ = θ] fΘ (θ) dθ

(3)

To calculate the probabilities in (3) note that P [X = x|D = d] is the result of a
hypergeometric experiment where the order is taken into account, the random
variable D|Θ=θ is binomially distributed with parameters N and θ and finally
P [X = x|Θ = θ] is the result of a binomial experiment where the order is taken
into account. Substitution in (3) yields

P [D = d|X = x] =
(

N − n

d− s

)
∫ 1

0

θd(1− θ)N−dfΘ(θ) dθ

∫ 1

0

θs(1− θ)n−sfΘ(θ) dθ

Since all the probabilities in (2) can be computed, we can define the stopping
set A = {x ⊂ H|P [s ≤ D ≤ s + k|X = x] ≥ 1− α}. Note that again A satisfies
Definition 6 and hence the stopping criterion will always be met. We will refer
to the condition in A as the prior Bayesian rule. If we observe x = (x1, . . . , xn),
then both n and s are known and therefore, the posterior distribution of Θ
can be written as fΘ|X=x

(θ) = Cθs(1 − θ)n−s fΘ (θ), where C is a constant
given by

∫ 1

0
θs(1 − θ)n−s fΘ (θ) dθ. We can use the posterior distribution of

Θ to update the prior. We will refer to the condition in A using the updated
posterior distribution as the posterior Bayesian rule. This procedure of collecting
data and updating the distribution of Θ can be done in several stages, defining
in that way a sequential procedure. Note that using a Bayesian approach we can
compute the probabilities of interest also when s = 0.

The next section illustrates with a simple example the ideas described before.

5.3 Example

We consider for this example an LTS consisting of N = 3000 transitions. We
assume as prior distributions for the error probability Θ the Uniform(0, 1) and
the Beta(5, 495) distribution. Beta and Uniform distributions are typical choices
for prior distributions in Bayesian statistics. Note that assuming the Beta(5, 495)
as prior distribution we force the error probability to be small, in this case it is
concentrated near its mean value 0.01.

13

First we show to what extent the choice of the prior distribution influences
the results of the calculations in Section 5.2. Denote by kU and kB the minimal
value of k such that (2) holds for α = 0.05, for uniform and beta prior distribu-
tions, respectively. Table 1 shows that kB is smaller than kU . This is intuitively
unsurprising, since the expected posterior value of Θ (last two columns of Ta-
ble 1) is smaller in case of prior beta distribution (and therefore, fewer errors are
expected). We observe that the difference between kB and kU is larger for small
values of n. Nevertheless, as n approaches to N both kU and kB converge to the
same value. In both cases, to certify error freeness approaches exhaustive test-
ing. If for example our quality criterion consists of accepting at most kU = 20
remaining errors, with probability 0.95, we know that testing 2073 (69.1% of
the total) transitions the stopping criterion met (which differs in almost 30%
from exhaustive testing). Since the cost of testing is usually high, we can decide
whether to stop testing at this point or not. Of special interest is the case where

Transitions (n) Errors (s) kU kB E [ΘU |X = x] E [ΘB |X = x]

500 6 61 45 0.0139 0.011

1200 12 32 29 0.0108 0.01

2073 27 20 18 0.0134 0.0124

2400 35 15 14 0.0149 0.0137

Table 1. Minimal value of k such that (2) holds, and expected posterior value of
Θ for prior Uniform(0, 1) and Beta(5, 495) distributions, for an LTS with N = 3000
transitions, given n and s.

we do not observe any errors after several runs (s = 0). Denote by nU and nB

the number of error free visited transitions needed to ensure that the probability
of having at most k remaining errors is at least 0.95, for uniform and beta prior
distributions, respectively. Table 2 shows that in this case nU is smaller than nB .
This can be intuitively surprising considering what we said in the previous case.
However, this result can be explained looking at the posterior density function
of Θ, assuming prior uniform distribution. The posterior density in this case
is proportional to (1 − θ)n. Clearly, this is a strictly decreasing function that
converges to its maximum when θ approaches to 0. Figure 8 shows the poste-
rior density function of Θ assuming uniform prior distribution (left) and beta
prior distribution (right) for the first three values of nU in Table 2. Note that in
both cases when n increases the density function becomes higher and its mean
value is shifted to the left, i.e., the expected posterior value of Θ decreases when
n increases. For the uniform prior distribution θ approaches to 0 rapidly and
therefore, fewer errors are expected. As in the previous case, to certify an error
free system leads to exhaustive testing. In case of uniform prior distribution, ex-
actly 95% of the transitions have to be consecutively visited without finding any
error to declare that the system is error free (with probability 0.95). In case of
beta prior 98.8% is required. According to this example we can conclude that in

14

0.002 0.004 0.006 0.008 0.01

100

200

300

400

500

600

700

f
QÈ

X=x
HΘL ~ UniformH0,1L

0.005 0.01 0.015 0.02

50

100

150

200

f
QÈ

X=x
HΘL ~ BetaH5,495L

Fig. 8. Posterior density functions of Θ assuming uniform and beta prior distributions,
when s = 0 and n = 397, 511 and 714.

Errors (k) nU nB

20 397 653

15 511 903

10 714 1287

5 1178 1937

1 2329 2780

0 2850 2965

Table 2. Error free transitions needed to have at most k remaining errors with proba-
bility at least 0.95, for an LTS with N = 3000 transitions, s = 0 and prior distributions
Uniform(0, 1) and Beta(5, 495).

case of finding errors during testing the results assuming beta prior distribution
outperforms the ones assuming uniform prior while the opposite holds when no
error is found during testing.

We now compare the results obtained using the binomial rule in (1) and the
Bayesian rules in (2). In the following example we only assume prior uniform
distribution for Θ. Figure 9 shows the probability of having at most k remaining
errors using the binomial rule (1), represented by dots, and the Bayesian poste-
rior rule (2), represented by squares, respectively, when we observe s = 16 and
n = 1500. Clearly, the value of k needed to meet the stopping condition is smaller
in case of using the Bayesian rule. Table 3 shows the value of k obtained applying
the prior, the posterior and the binomial stopping rules, respectively. Note that

Data Prior Posterior Binomial

n = 1500, s = 16 k = 27 k = 25 ku = 43

n = 1500, s = 0 k = 4 k = 3 −
Table 3. Values of k obtained using the prior, the posterior and the binomial stopping
rules.

15

ææææææææææææææææææ
ææ
æ
æ
æ
æ
æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ
æ
æ
æ
ææ
æææ
ææææ

ààààààà
à
à
à
à

à

à

à

à

à

à

à

à

à

à

à
à
à
à
àà
àààà

àààààààààààààààààààà

10 20 30 40 50
k

0.2

0.4

0.6

0.8

1.0

Fig. 9. Probability of having at most k remaining errors using the Bayesian posterior
rule (squares) and the binomial rule (dots) using Uniform(0, 1) prior distribution when
s = 16 and n = 1500.

in case we do not observe any errors during testing, only the Bayesian stopping
rules are suitable since the binomial rule does not provide any information. The
difference between the values obtained using the prior and the posterior rules
are not very significant in this example. However, this is due to the fact that the
posterior rule updates the value of the posterior distribution of Θ just once. If
the rule is applied sequentially using the information collected during the test,
the results of the posterior rule will also be improved.

6 Conclusion and future work

We have presented a test procedure for simplified software systems consisting of
a single component running one sequential process only. Such software systems
are modelled as transition systems. We have defined an exhaustive procedure
that uses the knowledge of the structure of the system and the results of prior
testing. However, since exhaustive testing is not always feasible in practice, we
have presented a statistical stopping criterion consisting of accepting with certain
confidence a maximum number of remaining errors in the system.

There are many natural extensions to this work. We intend to study a walking
function update procedure for general nets instead of sequential ones. We will
consider errors located in the direction of the arcs or in the states, or that
they are input dependent, meaning that for one input the transition can show
an error but for another input the transition functions correctly. We can also
introduce different kind of errors or correlations between them. Restarting the
run not from the initial state but from the error marked transition is also a
possible extension. These extensions must be also statistically modelled in order
to define new statistical procedures.

References

1. A. Andrews, J. Offutt, and R. Alexander. Testing web applications by modeling
with FSMs. Software Syst. Model., 4(3):326–345, 2005.

16

2. F. Belli, C. Budnik, and L. White. Event-based modelling, analysis and testing
of user interactions: approach and case study. Software Testing, Verification and
Reliability, 16(1):3–32, 2006.

3. E. Brinksma and J. Tretmans. Testing transition systems: An annotated bibliogra-
phy. In F. Cassez et al., editor, Modelling and Verification of Parallel Processes: 4th
Summer School, MOVEP 2000, volume 2067 of Lecture Notes in Computer Science,
pages 187–195. Springer, Berlin, 2001.

4. T. Chow. Testing software designs modeled by finite-state machines. IEEE Trans.
Softw. Eng., 4(3):178–187, 1987.

5. A. Di Bucchianico, J. F. Groote, K. v. Hee, and R. Kruidhof. Statistical Certification
of Software Systems. Comm. Stat. C, 37(2):To appear, 2008.

6. R. Goud, K. v. Hee, R. D. J. Post, and J. M. E. M. v. d. Werf. Petriweb: A reposi-
tory for Petri nets. In S. Donatelli and P. S. Thiagarajan, editors, 27th International
Conference on Applications and Theory of Petri Nets and Other Models of Concur-
rency, volume 4026 of Lecture Notes in Computer Science, pages 411–420, Berlin,
2006. Springer.

7. W. Howden. Methodology for the generation of progarm test data. IEEE Trans.
Softw. Eng., 24:208–215, 1975.

8. J. Huang. An approach to program testing. ACM Comp. Surveys, 7(3):113–128,
1975.

9. P. Thevenod-Fosse, H. Waeselynck, and Y. Crouzet. Software statistical testing.
In B. Randell, J. C. Laprie, H. Kopetz, and B. Littlewood, editors, Predictably
Dependable Computing Systems, pages 253–272. Springer, 1995.

17

